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ABSTRACT
The availability of constant electricity supply is a crucial factor to the
performance of any industry. Nevertheless, the unstable supply of
electricity in Cameroon has led to countless periods of electricity
load shedding, hence, making the management of the telecom
industry to fall on backup power supply such as diesel generators.
The fuel consumption of these generators remain a challenge due
to some perturbations in themechanical fuel level gauges and lack
of maintenance at the base stations resulting to fuel pilferage. In
order to overcome these effects, we detect anomalies in the
recorded data by learning the patterns of the fuel consumption
using four classification techniques namely; support vector
machines (SVM), K-Nearest Neighbors (KNN), Logistic Regression
(LR), and MultiLayer Perceptron (MLP) and then compare the per-
formance of these classification techniques on a test data. In this
paper, we show the use of supervised machine learning classifica-
tion based techniques in detecting anomalies associated with the
fuel consumed dataset from TeleInfra base stations using the gen-
erator as a source of power. Here, we perform the normal feature
engineering, selection, and then fit the model classifiers to obtain
results and finally, test the performance of these classifiers on a test
data. The results of this study show that MLP has the best perfor-
mance in the evaluationmeasurement recording a score of 96% in
the K-fold cross validation test. In addition, because of class imbal-
ance in the observation,weuse the precision-recall curve instead of
the ROC curve and registered the probability of the Area Under
Curve (AUC) as 0:98.

Introduction

The expansion of mobile services of the telecommunication industries has
resulted in the installation of cell towers to diverse parts of the world. In
developing countries like Cameroon, the supply of the power grid is irregular
and the network companies find it difficult to manage their base stations
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particularly, their data centers and other IT equipments. Due to this, the
management of the base stations uses backup power supply such as diesel
generators, solar panels, batteries and other secondary source of power to keep
their systems in operation. However, these backup sources, particularly, the
power generation plants have also created additional complications like external
or internal seeps of oil, fuel or coolant, inaccuracies in the mechanical fuel level
gauges and poor maintenance leading to fuel pilferage from the various base
stations of the network operators. These anomalies directly increase the fuel
consumption and affect the operations of the industry in the long run.
Therefore, our goal in this work, is to adopt machine learning (ML) scheme,
using TeleInfra1 as a case study to identify the anomaly in fuel consumption of
their standby generators.

TeleInfra is a telecommunication company in Cameroon that uses backup
generators when the main power grid goes down. The company provides
services such as site maintenance and refueling of generators in the base
stations. The dataset used in this paper is obtained from base stations under
supervision of TeleInfra company. It contains attributes of fuel consumed by
the generators and other information such as maintenance details.

Anomaly in a data is considered as an observation which does not con-
form to the expected standard in the data. Meanwhile, recent works in
anomaly detection such as fraud detection analysis (Chouiekh and EL
Hassane 2018; Zanin et al. 2018), thermal power plant (Banjanovic-
Mehmedovic et al. 2017), medical image analysis (Taboada-Crispi et al.
2009), etc., have shown how well ML techniques can be used to address
these challenges.

From the various anomaly detection researches, the algorithms used can
outperform each other based on the type of data and the underlying assump-
tions employed. From the literature, most of the competitive ML techniques
used in classification task like in our case, consist of SVM2, KNN3, LR4, and
MLP5. In this study, we do a comparative analysis of the performance of
these classifiers to determine the best classifier that can accurately detect the
anomalies in the fuel consumption dataset. SVM aims at generating an
optimal hyperplane (decision plane) that maximizes the margin between
two classes, using support vectors. KNN stores the training data and predicts
the test instance based on distance measure and the majority votes from the
training sample. LR uses probabilities to predict the chance of a sample to
belong in a certain class. MLP learns the complexity of the data and opti-
mizes the weights to minimize classification error. A more detailed explana-
tion of these classifiers is given in Section 3.

The rest of the paper is organized as follows: In Section 2 we perform
exploratory data analysis to discover patterns in the data. Section 2.1
describes the dataset used for the study as well as preprocessing of the
data. Section 2.2 presents a descriptive statistics of the data. We then provide
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a brief description of ML algorithms on SVM, MLP, KNN and LR classifiers
in Section 3. Section 4 presents on the metrics to evaluate the performance of
our models. Results and analysis on the performance of the classifiers are
reported in Section 5. Section 6 provides the conclusion of the study.

Exploratory Data Analysis

Data Collection

In this study, a secondary source of data is gathered from TeleInfra. The data
contains different power types used by the operator and we mainly focus on
the base stations powered by the generator. Note that the information
recorded here includes the working hours of the generator, the rate of con-
sumption, fuel consumed, the quantity of fuel added in the generator, etc.
Table 1 gives a detailed report on the feature parameters used to depict the
dataset. Furthermore, the data is defined in both numerical and categorical
forms with missing values6 of ,1:75%. At the end, we used a sample size of
5905 inputs of the fuel consumed by the generators within September 2017 to
September 2018.

Meanwhile, in order to have a true predictive model of this research, we
use the Gradient Boosting Classifier7 to classify the strongest feature para-
meter associated with the recent residual. Thus, we calculate the basic
regression coefficient of the residual on the selected feature and then sum
it together with the current coefficient for that variable. Figure 1 shows the
variable RUNNING_TIME_PER_DAY of the generator is the key important
feature which has a great influence on the output. This is followed by the
DAILY_CONSUMPTION and the least feature importance parameter is
GENERAL_1_CAPACITY_(KVA).

Table 1. Variable description: variables associated with fuel consumption.
RUNNING_TIME: The total number of hours the generator worked before the next refueling is done.
RUNNING_TIME_PER_DAY: The number of hours the generator is working in one day.
NUMBER_OF_DAYS: The number of days before the next refueling process of the generator.
CONSUMPTION_HIS: The total fuel consumed between a specific period of time before the next refueling
is done.This feature is determined by NUMBER_OF_DAYS, CONSUMPTION_RATE and RUNNING_TIME.

DAILY_CONSUMPTION: The quantity of fuel the generator consumes in a day base on its rate of
consumption per hour and working hours in a day.

QTE_FUEL_FOUND: The quantity of fuel found inside the generator tank before refueling is done.
QTE_CONSUMED_BTN_VISIT_PER_DAY: This variable is extracted from division of
QTE_CONSUMED_BTN_VISIT and NUMBER_OF_DAYS to obtain the actual consumption of the
generator.

CURRENT HOUR METER GE1: The hour meter reading of the generator.
PREVIOUS HOUR METER G1: The previous meter reading of the generator.
MAXIMUM_CONSUMPTION_PER_DAY: The maximum fuel the generator can consume in a day based on
its rate of consumption.

CONSUMPTION_RATE: The number of liters the generator consumes per hour.
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Descriptive Statistics

Figure 2 displays that the fuel consumed by the generator has a skew value of 0:67
and a kurtosis (the measure of distribution curve) of 0:40 (refer to the left plot).
The Gaussianity test in the right plot shows that there are some anomalies in the
fuel consumed. This is clearly confirmed in Figure 3(left) where the generator
working hours exceeded 24 hours in a day. All these features are highly captured
with the Gradient Boosting Classifier. The plot also reported that the average fuel
consumed in a day is,262L. In effect, out of an observation size of 5905, 35:11%
is detected as an anomaly and this is clearly depicted in Figure 3 (right).

The pie chart in Figure 3 (right) shows that there is a class imbalance in
the model data and this can affect the classification base task. This class
imbalance is where the number of one class is significantly large compared to
the other class. The effect of this would later be seen when we discuss about
the performance measure in Section 5.

Figure 1. Feature importance ranking fitted using Gradient Boosting classifier.

Figure 2. The distribution of fuel consumption. LEFT: A histogram showing the fuel consumed is
slightly positively skewed. RIGHT: A probability plot showing that the fuel consumed is ,96:29%
Gaussian.
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Figure 4 is a correlation matrix displaying the correlation coefficients
between the feature parameters in Table 1. Correlation is a normalized
covariance with its values ranging from � 1 to 1. The matrix measures
a linear relationship between variables with � 1 indicating that the related

Figure 3. Graph of number of hours the generator function in 1 day (left) and pie chart of the
target class labels (right).

Figure 4. A Correlation matrix measuring the linear dependence between the feature
parameters.

68 J. MULONGO ET AL.



variables have a strong negative relationship, that is, as one variable increases,
the other one decreases and 1 indicates strong positive relation, that is, an
increase in one variable results to increase in the other one. The diagonal
values indicate the correlation of a variable with itself (known as auto-
correlation). For instance, it can be seen from Figure 4 that the fuel con-
sumed has a strong positive relation of 0:83 with the number of hours the
generator is working. This means that as the generator continues to operate
for long hours, the fuel consumption directly increases.

The anomalies (also known as outliers) detected in the data include hours
the generator was working in 1 day, consumption exceeding what the fuel
generator can consume in a day and the case where the fuel consumed and
running time are zero. These outliers were used to generate the classification
class. In our case, these selected samples are defined as anomaly and the
others (refer to Table 1) as normal.

Figure 5 shows box plots of the fuel consumed by the clusters (also known as
base stations). For the purpose of this study, the cluster is a group of sites where
generators are located and therefore, the fuel consumed by a cluster is the total fuel
consumed by different generators in the various sites. Note how most of the base
stations have recorded outliers (thus, the dotted points on or below the whiskers)
in the fuel consumption. In addition, Agip is the station that recorded the least of
fuel consumption (,100L) in a day. On the average, most of the sites such as
Kousseri, Guider, Ngaoundal, Waza, etc., consumed* of fuel per day.

Figure 5. Fuel consumed per cluster.
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Methods

Support Vector Machine

Support vector classifier is a supervised machine learning technique used to
separate two or more classes by finding a hyperplane which maximizes the
margin between them. In the case of linearly separable classes, an ideal
hyperplane (decision plane) called decision boundary is defined to separate
two classes with the widest margin that ensures the distance between the
boundary of the two or more classes is maximized (Hastie, 2005). Given
a pair of input variables x 2 R and corresponding class di such that
di 2 f1;�1g, the classifier find a function that correctly maps each input
variable xi to its corresponding class di. The decision boundary is defined as;

f ðXÞ ¼ WTX þ b (1)

where W is the weight vector and b the bias. The support vectors that is, the
samples on the boundary of the margin determines the decision boundaries.
If f ðXÞ in Equation 1 is greater than zero then the input variable belongs to
class 1, otherwise, it belongs to class 0. To obtain an ideal hyperplane
between the two classes, is the same as minimizing the norm of the weight
vector (Hastie, 2005). For two-class classification, the input variable is either
on the positive or negative side of the decision variable such that;

diðWTx i þ bÞ � 1;"ðxi; diÞ; di 2 f�1; 1g (2)

The margin can be maximized by minimizing the weight vector W. In the
case of non-separable, penalizing term is introduced to allow misclassifica-
tion. The slack variable introduced in the case of non-separability measures
how far the data deviate from the correct class (Kelleher, Namee, and D’arcy
2015).

diðWTx i þ bÞ � 1� � i; i ¼ 1 � � �N; 0 � � i � 1 (3)

When a sample is correctly classified then the slack variable corresponding to
that input value is equal to zero. For non-linear classes, the kernel functions
transform the input example to a more separable space. A non-linear kernel
function transforms the inputs to a more separable space and defines
a hyperplane that clearly separates the classes. Commonly used non-linear
function includes the hyperbolic tangent, polynomial and radial basic kernel
(Aggarwal 2014).

Multilayer Perceptron

MLP is a supervised machine learning neural network inspired by the human
brain (Haykin 1994). The classifier consists of input layer, hidden layers, activation
function and output layer. The input layer receives the vector X ¼ x0; x1; � � � xn½ �
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and assigns a weight vector w ¼ w0;w 1; � � �wn½ �. MLP is a forward feed, that is,
weighted input table:Variablesmove from the input layer to the inner hidden layer
(Aggarwal 2014). The hidden layers enhance the model capabilities by allowing
the network to learn complex problem and give result in the output layer.
A nonlinear activation function applied to the weighted linear summation of the
input table:Variables to extract a relationship between the output and input
variable.

z ¼
Xm

i¼1

wjix i; (4)

y ¼ ϕðzÞ (5)

where wji is the synaptic weight connecting neurons between the layers and ϕ
is the activation function which transforms the weighted sum of the input.
The weight vector is unknown, therefore, weights in the input layer are
randomly initialized based on the feature importance of the input variables.
Hidden layers and activation function allow the model to learn non-linear
function as a result, low weight value at the input layer allows the model to
start as linear and due to increasing hidden layers, the model turns nonlinear
with increased weights.

Commonly used nonlinear function is the sigmoid function. The weight
adjustment is with respect to the error, that is, computed at each neuron to
make sure error minimization. As a result of these connections, each node is
penalized as every node contributes to the global error computed at the
output layer. The aim is to minimize the error, therefore the error correction
with respect to the weight (Haykin 1994) is done using the Gradient descent
method and this is given as;

Δwt
ji ¼ �η

@εðnÞ
@wji

(6)

where η is the learning rate and εðnÞ is the error term. At the output node,
the network error is computed. Noting that weights in the hidden layers are
updated based on the error computed at the output node. Learning rate
regulates the change of the adjusted weight in the direction of weight.
A small value of η controls the step size toward convergence whereas high
value will cause divergence. To ensure the error is minimized, weights are
adjusted such that the new weight became;

wtþ1
kj ¼ wt

ji � η
@εðnÞ
@wji

(7)

The weight updates are done either in a batch, that is, using batch or the
stochastic gradient descent methods.
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K-Nearest Neighbors

KNN is a sluggish learning algorithm that depends on the knowledge gained
from the training data to predict the test data. In general, the algorithm does
not make any assumptions about the data but mainly bases its prediction on
the k neighboring terms. Therefore, if we consider to predict for unknown
parameter, the KNN scheme will scan through the training data to obtain all
the related instances that are close to the unknown points. For quantitative
data, the Euclidean formula defined in Equation 8 is used to select the
similarity points whilst for other data types like nominal or ordinal,
Hamming distance can be applied.

D ¼ jjxj � x0jj (8)

Furthermore, in regression analysis, we measure the expectation of the
predicted feature and for classification problems like in our case, the most
dominant class is returned.

Since KNN depends on the number of k neighbors during its testing phase
and the algorithm uses distance measure to determine test class, the algo-
rithm suffers from high computation cost. The choice of the value k influ-
ences the performance of the model. A small value of k can result in high
accuracy but can results in over-fitting the model whereas for a large value of
k, although the effect of noise is reduced, KNN is prompt to have lose
boundary hence under-fitting the model.

Logistic Regression

LR makes use of conditional probability to map the input variable to
a corresponding classification class. Given an input variable, the model predicts
the probability of an input variable to belong to classification class. Suppose
given an input variable x such that x ¼ x 0; x1; � � � xn½ �, and the corresponding
class y i;"i ¼ 1; � � � ; p where p represents the number of classes. LR uses non-
linear activation, that is, the sigmoid function to give the relation between the
input variables and the output class. In the case of binary classification where
y 2 f0; 1g is the probability of being in either class 0 or 1 is given by;

pðyjxÞ ¼ 1
1þ e�z

; z ¼ w0 þ
Xn

i¼1

WTx (9)

In this work, we aim to optimize the weighted parameters W so that the
classification error can be minimized. These parameters are either estimated
by gradient ascent or stochastic gradient ascent methods (Pedregosa et al.
2011). The log-likelihood and Newton methods are commonly applied to
glean optimal parameters (Qi and Sun 1993). In both gradient cases, the
hyperparameters are adjusted until the model has a minimum error between
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the observed value and the predicted. Here, the stochastic gradient ascent
updates the weight at every single point depending on the direction of the
weight. This distinguishes the two gradient cases.

Performance Evaluation

To evaluate the predictive capabilities of the fitted models, we adopt methods
such as train-test split and K-fold cross validation methods. In this work, we
evaluate our predicted models discussed in Section 3 using cross tabulation
presented in Table 2. Here, the table presents a binary classification confu-
sion matrix. From Table 2, the following information about the classifiers’
performances can be obtained as follows:

● True positive (TP): correct prediction of positive class
● True negative (TN): predictions of negative class when the class is
actually negative

● False negative (FN): wrong prediction of positive class as negative.
● False positive (FP): model predicts negative class predicted as positive.

Recall or sensitivity gives the classifier capability to correctly classify the positive
class which is given as a ratio of TP and positive in the sample in the dataset. Other
measures such as precision compare the true positive in the confusion matrix and
the total number of positively predicted by the classifier. Specificity is also known
as the true negative rate of the classifier, it is the ratio of true negative and negatives
sample. F-measure the Harmonic mean of recall and precision. Equation 10 to 14
gives the formulae of the computation generated from the confusion matrix.

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(10)

Recall ðSensitivityÞ ¼ TP
TPþ FN

(11)

Precision ¼ TP
TPþ FP

(12)

F�measure ¼ 2
Precision � Recall
Precisionþ Recall

: (13)

Table 2. Performance metrics for classification.
Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)
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SpecificityðTNRÞ ¼ TN
TNþ FP

(14)

Cross validation is a technique used to check how the model will perform in
general. We performed K-fold cross-validation with 10 folds. The data are
split into K folds, that is, for 10 folds, 9 folds are used to train the data and
the 10th fold is used for testing. This process is repeated until all the folds are
trained and tested. The accuracy of the classifier is obtained by taking the
average of all accuracies gleaned in the test fold.

Due to the imbalanced nature of the normal and anomaly class in our
dataset, ROC8 curves are used to measure how the classifier is performing in
each class. As we saw earlier, the data is skewed and therefore, class distribu-
tion might affect classifier performance. The area under the curve (AUC)
visualizes the classifier behavior on how often the model will classify positive
class correctly and when the actual classification is negative, how often the
model predicts positive. In this study, we want to maximize the true positive
rate and minimize the false positive rate. The curve has TPR on the vertical
axis and FPR on the horizontal axis. The plot ranges from 0� 1 with
position (0,1) indicating a perfect classification model. The TPR and the
FPR of the classifier is given by;

TPR ¼ TP
TPþ FN

(15)

FPR ¼ FP
FPþ TN

(16)

Results and Analysis

After accomplishing the normal feature engineering, selection, and as
expected, fitting a classifier and obtaining some results in a form of
a probability or a class, the next thing we need to do is to evaluate how
efficient the classifier is on the metric performance using the validation
dataset. In this work, the classification technique is done by splitting9 the
model data into 80–20 ratio, to obtain the train and test sets, respectively.

Tables 3 and 4 show the performance of the fitted models (SVM, MLP,
KNN and LR) on the dataset. For instance, in Table 3, the TPs are 752 (for
SVM), 773 (for MLP), 696 (for KNN) and 741 (for LR). In the case of TNs,
we have 369 (SVM), 362 (MLP), 310 (KNN) and 95 (LR). The lowest FP is
recorded by MLP as 9 and the highest is captured by KNN as 86. A summary
probability of these performances are reported in Table 4. For example, the
MLP classifier recorded the highest score of ,96:1% on the test data. This is
followed by the SVM classifier which gave an accuracy score of 94:9% on the
validated data. Moreover, the proportion of the dataset that is classified as an
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anomaly and actually detected as an anomaly in the positive class [refer to
Equation 12] is ,94:3% (for LR), ,96:2% (for SVM), ,89:0% (for KNN)
and ,98:8% (for MLP). Note also that, the model classifier that recorded the
highest specificity is the MLP with a percentage value of ,97:6%.

The Violin plots displayed in Figure 6 compare the 10-fold cross validation
scores of the model classifiers. The white dot in the middle of the Violin plots
denotes the median of each classifier. The thick gray bar in the center
denotes the inter-quartile range whilst the thin gray line represents the
95% confidence interval. The colored regions (red, green, yellow and
magenta) on each side of the gray line is a kernel density estimation depicting
the distribution shape of the model data. Note how the MLP and SVM
classifiers have broader regions around their respective medians. This clearly

Table 3. Classifier confusion matrix.
Confusion matrix

SVM MLP KNN LR

TP 752 773 696 741
FP 30 9 86 41
TN 369 362 310 95
FN 30 37 89 304

Table 4. Classifier evaluation performance.
Classification performance

Classifier Accuracy F1-Measure Recall Precision Specificity

LR 0.708 0.811 0.709 0.943 0.699
SVM 0.949 0.962 0.962 0.962 0.925
KNN 0.851 0.888 0.887 0.890 0.783
MLP 0.961 0.971 0.954 0.988 0.976

Figure 6. Violin plots showing the 10-fold cross validation score for LR, KNN, MLP, and SVM.
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means that, these classifiers (MLP and SVM) have a higher probability scores
than the other two classifiers (LR and KNN).

Figure 7 shows the ROC (right panel) and precision-recall (left panel)
curves. Due to huge class imbalance in the dataset (refer to Figure 3)
(right), the precision-recall curves is approximate for this study. Here, the
MLP classifier registered an AUC of 99% followed by the SVM with an
AUC of 96%. These high values show that there is a trade-off between the
true positive rate and the positive predictive value for these two classifiers,
as relatively compared to KNN and LR. However, if we ignore the fact that
there is a class imbalance in the dataset, then we measure the agreement
between the true positive rate and false-positive rate for the predictive
model. In this case, we consider the right panel curves. Note how the
ROC curves overestimated the probabilities of the model classifiers. This
is clearly due to the huge skewness in the distribution of the sample data.
Hence, for the purpose of this study, we choose the left panel curves as
appropriate.

Using cross validation with 10 splits, we can observe the relationship
between training score and cross validation score of different classifiers as
presented in Figure 8. The variation of cross validation curve results in
high variance and that of the training score curve results in high bias.
High variance is an indication that the model detects every noise in the
data. High bias implies that the model data has less information.
Regularization of bias and variance help the model to attain better pre-
dictive performance. The graphs presented in Figure 8 show that the cross
validation curve tends to converge with increase in the training sample. In
this work, the MLP and LR converge just after 1000 training samples
whilst the other two classifiers slowly converge and may require more
training samples that is > 5000.

Figure 7. Precision-Recall curves and ROC curves of classifiers.
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Conclusion

In this paper, we aimed at evaluating the classification algorithm by train-
ing the model to learn and identify the anomalies in the fuel consumption
dataset obtained from a telecommunication base station. Four classification
techniques were evaluated namely; SVM, LR, MLP, and KNN. MLP
recorded the best performance generally with an accuracy score of 96:1%
on the test data. Although the SVM outperformed the other two classifiers
(KNN and LR), using the K-fold cross validation technique, the MLP again
slightly performed better than SVM with a score of 96:1%. Furthermore,
from the performance measure table, the MLP registered the best predicting
power of detecting the anomalies. The LR also performed better than the
KNN in the precision score with respective values of 96:1% and 89:0%. The
class imbalance in the dataset resulted in the work to choose the Precision-
recall curve over the ROC curve to avoid overestimation. Again, the MLP
recorded an AUC of 99:0% as the highest performance classifier. This is
followed by SVM with an AUC of 96:0%. We therefore conclude that the
MLP classifier gives the overall best performance over the other classifiers,
that is, the classifier best fits the training examples compared to other
classifiers in terms of anomaly detection and in evaluation performance
such as K-fold cross validation as well as the use of the precision-recall
curves.

Figure 8. Training and cross validation score curve of MLP, KNN, SVM, and LR.
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Notes

1. http://www.art.cm/en/node/3111.
2. Support Vector Machine.
3. K-Nearest neighbors.
4. Logistic Regression.
5. MultiLayer Perceptron.
6. Here, the NaN values are removed using the Pandas module dropna.
7. Using the Python module sklearn.ensemble.GradientBoostingClassifier, we can compute

the feature import to choose the relevant feature parameters. Note, this classifier uses
the forward stagewise algorithm.

8. Receiver Operating Characteristic.
9. Here, we separate the dataset into train and test sets using the Python SciKit module

sklearn.model_selection.train_test_split.
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