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Abstract: Alzheimer's disease (AD) is a progressive brain disorder and a very common form of 

dementia. Neuroimaging techniques, such as Magnetic Resonance Imaging (MRI), produce detailed 3-

dimensional images of the brain showing insights for amyloid deposits and inflammatory alterations as 

disease markers.    The early diagnosis of AD using MRI provides a good chance for patients to prevent 

further brain deterioration by stopping the loss of nerve cells. This paper explores the use of 

unsupervised clustering approaches for the early diagnosis of AD. Though it is very common to use 

classification techniques for identifying medical diseases, the lack or the inaccuracies of labeled data 

can generate a problem. In this work, the k-means and k-medoids are compared while employing the 

Voxel Based Morphometry (VBM) features extracted from the MRI images. The effect of choosing 

certain local regions of interest (ROIs) for the analysis is also compared to the global whole-brain 

analysis.  The results show that the proposed approach can perform an early diagnosis of AD with an 

accuracy of 76%. 

 

Keywords: Unsupervised Learning, Clustering, K-means, K-medoids, Regions of Interest (ROI), 

Alzheimer’s disease, Magnetic Resonance Imaging (MRI). 

 

 
1. Introduction 

 
In 2018, fifty million people worldwide are reported living with dementia. This number is expected to 

reach 152 million people by 2050 [1]. About 68% of this increase, is believed to belong to low- and 

middle-income countries such as Egypt [2]. Alzheimer's disease (AD) is a progressive brain disorder 
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and a very common form of dementia. Symptoms appear in the form of memory loss, poor language, 

irrational problem-solving skills, and the symptoms gradually increase. Patients will eventually be 

unable to do simple self-management tasks. Although age growth is one of AD's greatest risk factors, it 

is not considered a normal stage of aging. In the pre-clinical stage of AD, far before symptoms appear, 

serious brain changes occur by two proteins; beta-amyloid and tau protein. Beta-amyloid protein forms 

plaques disturbing cell functionality and Tau protein forms tangles blocking cell communication [1]. 

The two proteins reach abnormal levels in cells of AD brain patient, neurons start to die and the brain 

starts to shrink.   

 

Unfortunately, AD has no cure. Only progression of the disease might be slowed, and symptoms are 

treated to raise the comfort and wellbeing of the patient and his family members. However, 

neuroimaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), 

and Positron Emission Tomography (PET) produce detailed 3-dimensional images of the brain that 

show insights for amyloid deposits and inflammatory alterations [1]. MRI describes the integrity of the 

structures of gray matter (GM) and white matter (WM) in the brain that plays a significant part in the 

diagnosis of AD. Morphometric methods, such as Voxel-Based Morphometry (VBM) [3], allows the 

automatic evaluation of GM structures of the suspected AD patients to be compared to the Normal 

Controls (NC) of aged seniors.  

 

The analysis of neuroimaging techniques can be focused to extract features from certain brain regions or 

the whole-brain. Studies show that neuro-degeneration in AD emerges from the medial temporal lobe, 

starting at the entorhinal cortex and progresses to the hippocampus [5]. On the contrary to the whole-

brain based approach, the ROI-based approach focuses on one of the four major lobes; the medial 

temporal lobe. The ROI-based approach registers MRI images to a template of pre-defined brain 

regions. Although the whole-brain based approach captures the whole pattern of AD by analyzing every 

part of the brain, practically it suffers from performance issues. The curse of dimensionality caused by 

the high-dimensional nature of the data in MRI reduces the accuracy and increases the run time. Pre-

specifying a set of ROIs for processing rather than the whole-brain is an advantageous approach. It 

poses a good chance for removing noise from data resulting in better disease identification and overall 

run time reduction.  

 

The high dimensional data encountered in MRI studies for the AD identification problem invited 

several machine learning approaches to deal with this complex nature. Supervised machine learning 

uses labeled datasets for training. The underlying learning process analyzes the dataset and builds a 

function that can be used in the identification. Supervised learning can be viewed as a general term for 

the classification technique [4]. However, the labeled data used in the training process requires the 

intervention of a domain expert for the labeling process. The efficiency of the classifiers highly depends 

on the quality of the labeling process which may be erroneous and time-consuming. On the other hand, 

unsupervised learning uses an unlabeled dataset. The learning process depends on modeling the 

structure and finding patterns within the data. Unsupervised learning can be viewed as a general term 

for the clustering technique. Clustering is not considered an alternative for classification. Despite the 

low accuracy that clustering techniques may normally achieve compared to classification techniques, it 

has the power that it is able to discover early key patterns in the data. The advantage of using clustering 

lies in the automated preliminary insight that the process can provide without any expert intervention. 

This can give insights for the early diagnosis of diseases at lower costs. 
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This paper studies the use of unsupervised clustering approaches, k-means and k-medoids, for the early 

diagnosis of AD applied on VBM features extracted from MRI. the effect of choosing certain local 

regions of interest ROIs for analysis compared to the global whole-brain analysis is also introduced and 

studied. 

 

The rest of this paper is arranged as follows; the related work presented in the literature for the 

identification of AD is discussed in Section 2, focusing on the clustering approaches for disease 

identification. Section 3 describes the scientific approaches and methods used in this study. Section 4 

presents the data encountered in the study and explores the experimental results obtained. Finally, 

Section 5 concludes the findings and results of the paper. 

 

 

 

 

2. Related Work 
 

Several supervised and unsupervised learning techniques are proposed in the literature to classify AD 

patients from NC. Unsupervised clustering techniques proved robustness in identifying clusters of 

homogeneous  AD patients. Hany et al. in [24] studied several clustering techniques and discussed their 

ability to help in the treatment of AD patients. The study found that clustering techniques can provide 

useful discriminating features to detect the conversion from early to advanced stages in AD.  Escudero 

et al. in [25] proposed the development of a bioprofile that includes key patterns for the diagnosis of 

certain diseases in the patients‘ biodata. The research used k-means clustering technique on ADNI 

dataset and succeeded to differentiate between two groups pathologic/non-pathologic with an accuracy 

of 69%. The results of Escudero et al. study are compared to the results obtained in this paper by the 

proposed clustering approach. G. Tosto et al. in [26] searched for clusters of extra pyramidal signs 

progression and its development over time to diagnose AD. The study is applied on the data of more 

than three thousand AD patients from NACC database. It used k-means and was able to identify three 

clusters of various EPS burden degrees.  

 

Many studies used clustering for an early diagnosis. D. Kar and S. Halder combined unsupervised k-

means clustering with supervised classification for the early detection of brain tumor [36]. Their non-

invasive technique analyzed liquid biopsy and used k-means for image processing of CSF. They used 

Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for tumor classification. 

Çiklaçandir et al. used k-means for the early detection of breast cancer in [15]. The study proposed a 

system for identifying the lesion in the breast. K-means-mode was applied by Paul and Hoque in [27] to 

predict the likelihood of diseases. They tested their approach on medical dataset of diabetes and 

achieved 95% accuracy. Gamberger, D. et al. in [28] used multi-layer clustering to identify 

subpopulations of patients that have homogeneous clinical and biological markers. They concluded that 

viewing the gender of the suspected patient as a significant descriptor could lead to better effectiveness 

in the treatment process. The hierarchical agglomerative clustering is another type of clustering 

technique and is used in several studies. In [29], Y. Noh et al. applied hierarchical agglomerative 

clustering on MRI of early-stage AD patients to measure the cortical thickness. Their research found 

three clusters of AD patients with different and distinct clinical features. In [30], A. Cappa et al. used 

hierarchical agglomerative clustering to identify the neuropathological changes of AD.  
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Supervised classification techniques such as SVM proved reliability and robustness in AD/MCI 

classification as well. Researchers used SVM alone [12] and with other techniques. A. Demirhan in [13] 

used NN, KNN, and SVM to differentiate between AD and its mild form from NC. The study concluded 

that SVM was the best classifier among the three with an achieved accuracy reaching 82%. The Open 

Access Series of Imaging Studies (OASIS) database was used in the study. k. Hackmack et al. used 

wavelet transform in [14] and proposed a multivariate analysis of sMRI. The study created a feature set 

composed of scale, directionality, and local information extracted using dual-tree complex wavelet 

transform.  

 

Deep Learning has a tremendous improvement effect on different science areas over the past few years. 

Several works have been made to identify AD patients using deep neural network architectures. CNN 

was widely used for classifying AD and its prodromal stages. Weiming et al. in [22] designed CNN to 

predict mild cognitive impairment (MCI) to AD conversion using MRI. Islam et al. in [23] presented 

CNN for identifying different stages of AD by analyzing MRI data. They identified four AD classes; 

non-demented, very mild, mild, and moderate AD.  

For evaluating the discriminating power of different ROIs over the whole-brain approach, R. Cuingnet 

et al. in [11] compared ten methods and succeeded to identify between NC, AD, MCI converters, and 

MCI non-converters. The study included three different types of analysis approaches; five voxel-based, 

three vertex-based, and two ROI-based. The voxel based methods used the whole-brain for the VBM 

analysis. The vertex-based methods used the cortical thickness region whereas the two ROI-based 

approaches used the hippocampus region in the analysis. 

 

The majority of the analytical approaches that are proposed in the literature use features extracted from 

MRI and other neuroimaging modalities such as CT.  VBM approach has been extensively used in the 

identification of AD using various classification techniques [8-9]. D. Schmitter et al. compared volume-

based morphometry approach and the whole-brain VBM approach for AD/MCI classification in [10]. 

The study in [7] applied volumetric measurements of ROI; where a combined approach of wrapped 

classification and image segmentation is presented for determining the ROIs from MRI.  

 

Neuroimaging techniques have helped scientists in their research either when each technique is used 

separately or by combining their strengths. The work presented by [34] combines three neuroimaging 

techniques; CSF biomarkers, FDG-PET, and MRI. In this study, Zhang et al. classified AD, MCI, and 

NC using a kernel combination. The study made by Qing Li et al. also used multi-neuroimaging 

modalities including FDG, sMRI, florbetapir-PET, and PET to classify AD, cognitively unimpaired, and 

MCI [35]. Their study used discriminant dictionary learning. 

 

 3.  Unsupervised Clustering Approach for AD Diagnosis 
 

The proposed framework of the unsupervised clustering approach used for AD diagnosis is initially 

supplied with MRI dataset. The Dataset undergoes a pre-processing stage to adjust its flipping, MNI 

alignment, and ACC positioning. The pre-processed images are supplied to the VBM analysis block 

where morphometric features are extracted. For exploring the significance of different anatomical ROIs, 

a masking process is applied on the obtained feature vector where certain ROIs are extracted for further 

analysis and compared to the whole-brain features. 

Images are finally clustered using the ROI or the whole-brain feature vector into two clusters: AD 

patient or NC. The block diagram of the framework is illustrated in Figure 1.  
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Figure 1: Block diagram of Unsupervised Clustering for AD Diagnosis 

3.1 MRI Pre-Processing 
 

Before applying VBM analysis, MRI dataset is pre-processed to ensure the images are in a suitable form 

for processing. Images need to be flipped in the right direction and aligned with Montreal Neurological 

Institute (MNI) standard space. MNI formed a new standard template by aligning a large number of 

brain series scans of young healthy normal subjects. MRI dataset is aligned to MNI space by 

automatically aligning them to this template.  

 

The Anterior Cingulate Cortex (ACC) in all images has to be positioned close to the center of the MRI 

image i.e. (0,0,0). Unfortunately, this step is done manually for all the images in the dataset. Figure 2 

illustrates an MRI with a centered ACC.  The MRI images have to be in the NIfTI file format. This 

format is widely used in imaging informatics for neuroscience. The MRI image in this format contains 

metadata and voxels that can be in any dimension up to seven dimensions. MRI images used in this 

work are in three dimensions. 

 

3.2 Voxel-Based Morphometry Analysis 

VBM examines the primary variations in the structure of the brain. It can be applied to any anatomical 

scale such as GM, WM, or CSF density. It can effectively measure anatomical atrophy and its 

expansion. VBM of MRI data involves four processes: segmenting images where GM, WM, and CSF 

images are extracted, registering the segmented images to estimate the deformations that best align them 

together, performing spatial normalization to the registered images to the same stereotactic space and 

then smoothing these normalized images, and finally localizing the variations in the smoothed images 

by applying a statistical analysis [31]. The statistical analysis output is a parametric map highlighting 

regions in the image where GM concentration significantly varies between sets. Details of VBM 

implementation are found in [33]. 
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(a) (b) (c) 

Figure 2: MRI Centered at Anterior Cingulate Cortex Position: (a) Axial, (b) Coronal, and (c) Sagittal view 

 

 

 

3.3 Region of Interest (ROI) Masking 
 

At the final point in the statistical analysis of the VBM features analysis, the pre-processed MRI dataset 

undergoes a statistical t-test as shown in Figure 1. The statistical analysis reveals the important regions 

of the whole-brain in which GM loss varies between AD and NC. Figure 3 illustrates the GM loss in the 

cerebellum region in patient brain compared to a normal brain. ROI binary masks are applied on the 

whole-brain to extract ROIs. ROI masking process specified eight regions for extraction: hippocampus, 

cerebellum left, cerebellum right, medulla, calcarine, pons, occipital lobe, and frontal lobe. Two feature 

vectors are ready for clustering; the ROI-based feature vector and the whole-brain feature vector. 

 

 
 

Figure 3: Cerebellum Region of Interest 

 

3.4 Unsupervised Clustering Techniques 
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Unsupervised learning uses unlabeled dataset. The learning process depends on modeling the structure 

and finding patterns within the data. Unsupervised learning includes two major types: clustering 

techniques and association rules. In clustering techniques, the goal is to form clusters where 

homogeneous data are grouped in, whereas, in association rules, sets of rules are formed that try to 

describe the data. K-means and k-medoids algorithms are examples of clustering techniques. The 

proposed framework illustrated in Figure 1 used k-means and k-medoids for clustering. 

 

3.4.1 K-means 

 

K-means is a centroid-based partitioning technique. The algorithm uses the centroid of each cluster to 

represent that cluster. k-means initialize the centroids of k clusters with random items of the dataset. 

These randomly selected items represent clusters centroids. For each remaining item i in the dataset D, 

the algorithm calculates the Euclidean distance between this item and each cluster centroid c. The item 

is assigned to the cluster of the centroid c of the smallest Euclidean distance. After each iteration, the 

centroid of each cluster is updated by the mean value of all items belonging to this cluster. All items in 

all clusters are reassigned after the update to the nearest centroid. The iterations and the update of the 

centroid continue until all the clusters remain stable. Equation (1) explains the objective function  J of 

k-means algorithm where k is the number of clusters, n is the total number of items in the dataset, x is a 

dataset item, and c is the cluster centroid.  Equation (1) calculates the distance using a Euclidean 

distance function. 

 

J= ∑
j= 1

k

∑
i= 1

n

║xi
(j )
–cj║

2

       (1) 

 

The algorithm tries to form compact and separate clusters. The items in the dataset are distributed into k 

clusters with an objective function that maximizes the similarity between items of the same cluster and 

minimizes the similarity to other items in other clusters. However, the algorithm remains very sensitive 

to the outlier items in the dataset. These items are dissimilar from the majority of items in the dataset. 

Assigning this outlier to a cluster will cause distortion to the mean value of the cluster centroid which in 

turn affects the assignment of other items to this cluster. K-medoids algorithm proposed a good solution 

to this problem. 

 

3.4.2 K-medoids 
 

The algorithm redefined the centroid of the cluster. Actual items in the dataset are used as the cluster 

centroid instead of calculating the mean value of all the items in the cluster. The remaining items in the 

dataset are assigned to the cluster of which they are most similar to its ‗actual item‘ centroid.  

In the proposed clustering block illustrated in Figure 1, the cosine distance function is used to compute 

the distance between dataset items and the centroids. Cosine function is shown in Equation (2) where d 

is the distance between X and Y items. 

 

           

d=
X .Y

║X║║Y║         (2) 

4. Experiments and Results 
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4.1 Dataset 

 

Alzheimer's Disease Neuroimaging Initiative (ADNI) database is used in this work [34]. In 2004, ADNI 

was developed to help in the early diagnosis of AD by providing chemical biomarkers, genetics data, 

clinical data, PET and MRI image data. 

MRI neuroimaging technique suffers from intensity non-uniformity which degrade the quality of  the 

acquired data. The data intensity varies in an irrelevant pattern. The pulse sequence of the acquisition 

and the radio-frequency coil are both responsible for this problem. The ADNI images have the 

advantage of being pre-processed for a reduced intensity non-uniformity after applying the N3 

histogram peak sharpening algorithm. 

 

The demographic information of MRI studied subjects is shown in Table 1. A total of 275 MRI images 

are studied, including 113 NC and 162 AD patients. Almost two-third of the NC cases are males while 

less than half of the AD cases are males. The age mean is almost the same in both groups NC and AD. 

However, standard deviation of the AD group is higher than the NC group. The Mean value for Mini-

Mental State Examination (MMSE) for both groups is almost similar with a lower standard deviation 

value for AD group. 

 
Table 1: Demographics of the Dataset obtained from ADNI 

 

 Normal Control  Alzheimer’s Disease Patient 

 Total Number = 113 Total Number = 162 

Male/female 72/41  71/91 

Age: μ(σ) 77.49 (5.88)  73.82 (7.63) 

MMSE: μ(σ) 25.74 (7.74)  21.54 (3.92) 

 

 
4.2 Experimental Work 

The performance tests of the two clustering approaches are conducted on the whole-brain features and 

the ROIs features as illustrated in Figure 1. Two measures are used to evaluate the clustering quality of 

k-means and k-medoids, Accuracy and Rand Index. Accuracy is calculated by the formula shown in 

equation (3) and Rand Index is calculated by the formula shown in equation (4) where TP, TN, P, and N 

refer to the number of samples representing true positive, true negative, positive, and negative 

respectively. 

 

Accuracy = (TP + TN)/(P + N)    (3) 

 

Rand Index = (TP + TN) / (TP + TN + P + N)           (4) 

  

4.2.1 Performance Tests of k-means and k-medoids on Whole-Brain 

 

Table 2 demonstrates the accuracy, rand Index, and run time results obtained by k-means and k-medoids 

clustering on the whole-brain features. k-means obtained slightly better results than k-medoids in terms 

of accuracy and rand Index. However, k-medoids consumed about double the run time of k-means. The 
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proposed clustering approach is compared to the results obtained by Escudero et al. in [25]. The 

achieved accuracy of the proposed approach is better by 7% than the study in [25]. 

 
Table 2:  Performance Results of k-means and k-medoids Clustering 

 

 k-means k-medoids k-means by Escudero et al. 

in [25] 

Accuracy (%) 76.3% 75.27%  69% 

Rand Index  0.64 0.63 - 

Run Time (sec) 43.9  82.13 - 

 

 

4.2.2 Performance Tests of k-means and k-medoids on ROIs 

 

Eight brain regions are defined as ROIs. The regions include hippocampus, cerebellum left, cerebellum 

right, medulla, calcarine, pons, occipital lobe, and frontal lobe and are grouped as follows: 

 

• ROI1 includes the hippocampus region only. 

• ROI2 includes cerebellum right, cerebellum left, and the hippocampus. 

• ROI3 includes calcarine, cerebellum right, cerebellum left, and the hippocampus. 

• ROI4 includes frontal lobe, calcarine, cerebellum right, cerebellum left, and the hippocampus. 

• ROI5 includes pons, occipital lobe, medulla, frontal lobe, calcarine, cerebellum right, cerebellum left, 

and the hippocampus. 

 

The accuracy and run time results of measuring the effect of analyzing these ROIs instead of the whole-

brain on k-means are illustrated in Figure 4 and 6 respectively. Figure 5 and 7 illustrate the accuracy and 

run time results obtained by k-medoids on the same ROIs respectively. The results of analyzing ROI 

failed to obtain higher accuracy than the whole-brain demonstrated in Table 2. The average accuracy 

obtained by both clustering approaches on all ROIs is 60%. ROI5 obtained the best accuracy using k-

means and ROI3 obtained the best accuracy using k-medoids. The Figures show the run time increases 

from ROI1 to ROI5 due to the increase in the feature vector size. However, the measurements of the run 

time of ROIs remain far less than the measurements obtained by the whole-brain demonstrated in Table 

2. The maximum ROI run time obtained by k-means is less than 4 seconds and by k-medoids is less 

than 7 seconds. The whole-brain approach consumes more than 40 seconds by k-means and more than 

80 seconds in k-medoids. Despite the remarkable drop in the accuracy obtained by analyzing ROI, it 

presents a decrease in the run time by 13% compared to the whole-brain.  
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Figure 4: Accuracy of k-means clustering using different 

ROIs 

 
Figure 5: Accuracy of k-medoids clustering using different 

ROIs  

 

 

Figure 6: Run Time of k-means clustering for the different 

ROIs 

 

Figure 7: Run Time of k-medoids clustering for the different 

ROIs 

             

 The work presented in this paper is executed on a 64-bit Intel i5 processor with a memory size of 

11.5GB running on Ubuntu 18.04.5. 

 

4.3 Discussion 

k-medoids is considered more robust than k-means if the data contains noise or outliers. However, the 

complexity of k-medoid is much higher than k-means. The size of the dataset and the number of clusters 

used in this study are not large which makes k-means consumes less time than k-medoids. Moreover, 



Early Diagnosis of Alzheimer’s Disease Using Unsupervised Clustering 122 

the nature of the gray image MRI dataset does not contain any outliers which makes applying k-

medoids less advantageous than k-means. This explains the obtained results which show that k-means 

achieved higher accuracy than k-medoids and in shorter run time.  

 

The analysis of the whole-brain features obtained far better results than the analysis of the ROI features. 

The clustering approach used in the analysis made use of every key pattern in the brain MRI image to 

discover the intrinsic grouping inside the data. However, the ROI results are still accepted in an early 

detection diagnosis as it consumed less run time than whole-brain.  

 

The accuracy obtained by classification techniques normally exceeds 80% in many studies. However, 

this high accuracy comes at the expense of time and effort used by domain experts to label the training 

datasets. K-means and k-medoids used in this work were able to achieve only 4% lower accuracy than 

other classification techniques suggesting that clustering techniques are able to provide a good reliable 

preliminary insight for early diagnosis as well as saving the time and effort of domain experts. 

 

 
5. Conclusion 

 

The work presented in this paper explores the advantages of using unsupervised clustering approaches, 

k-means and k-medoids, for the early diagnosis of AD. The proposed framework applied the clustering 

approaches on Voxel Based Morphometry features extracted from MRI. The achieved results show that 

k-means obtained slightly higher accuracy than k-medoids and consumed nearly half of the k-medoids 

run time. The paper explores also the effect of choosing certain local regions of interest ROIs for 

analysis compared to the global whole-brain analysis. The whole-brain approach achieved more than 

10% higher accuracy than the ROI approach. However, the run time of the ROI approach is 13% lower 

than the whole-brain approach. The proposed approach managed successfully to obtain an early AD 

diagnosis with an accuracy of 76%. The clustering techniques used in the proposed approach provided 

an automated preliminary insight discovering early key patterns in the data with reliable accuracy. 
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