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Abstract 

Detecting anomalies in time series data plays a vital role in the various applications of diagnosis systems. The 

importance of anomaly detection is increased by its ability to detect abnormalities in Electrocardiogram (ECG) 

signals to generate alerts for cardiac health problems. An ECG is a time series that provides essential information 

about the electrical activity of the heart and is used in the diagnosis of numerous heart diseases. An accurate ECG 

streaming analytics approach requires continuous learning and adaptation in changing data behaviors. We aim to 

diagnose ECG by investigating healthy ECG and ECG with cardiological disorders by detecting anomalies in ECG 

signals. The main objective of this paper is to develop an efficient unsupervised diagnosing system for ECG 

streaming data based on an online sequence memory algorithm called Hierarchical Temporal Memory (HTM). The 

HTM is based on neural network and machine learning algorithm for continuous learning tasks. The proposed 

customization of the HTM algorithm based on our problem domain provides a significant performance results of 

detection of anomalies in the ECG signals. 

Keywords: Anomaly detection, ECG signals streaming, ECG diagnosis system, Hierarchical temporal memory 

1. Introduction 

Anomaly Detection is a point-in-time detection task where the data behavior is significantly different from the 

previous normal behavior. Nowadays, there is an exponential increase in data availability in streaming mode 

because of the rise of the Internet of Things (IoT) and a huge number of real-time applications with sensors. The 

efficient analysis of these streams can provide valuable information for many applications and usage cases. 

Therefore, detecting anomalies in streaming mode requires a rapid response to change in data behavior to trigger 

alerts in critical scenarios. 

 

The detection of anomalies in large volumes of data has many important real-time applications such as healthcare 

monitoring. Electrocardiogram (ECG) anomaly detection has been widely used to detect abnormal heartbeats that 

help in diagnosing many heart diseases, the leading cause of premature death worldwide [1].  
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Streaming data can be infinite, so offline algorithms that try to store the entire stream for analysis don’t adapt with 

it.  Therefore, the fundamental ability to analyze each stream needs to be modeled in an unsupervised mode to 

detect unusual behaviors in real-time. Unsupervised mode does not require the storage of all data but may need to 

store a small subset of data versus supervised mode. However, detecting anomalies in streaming data is a 

challenging task, detectors should process data in real-time, and continuously update their models to adapt to 

change [2].  

 

Various machine learning and signal processing techniques were used in the analysis of ECG signals. Existing 

works in this area can be divided into noise filtering, extraction of various ECG sub-waves, characteristics values 

and identification of anomalies in the ECG [3].  

In [4] their algorithm used time series motif discovery to determine frequent patterns in the ECG. Authors of [5] 

presented an approach to identify abnormalities based on differences in heartbeat morphologies. Their approach is 

inspired by time-series data mining techniques and methods for statistical outlier detection.  

The authors of [6] introduced an algorithm to extract the fiducial points from the ECG based on the Discrete 

Wavelet Transform (DWT) method. Also, in [8], they used the DWT for the ECG analysis and a support vector 

machine (SVM) classifier for ECG analysis and classification for heartbeat diagnosis. 

Authors of [3] compared the random forest method with neural networks, k-nearest neighbour and support vector 

machines for congestive heart failure. Authors of [7] used a generalized feed forward neural network to investigate 

arrhythmia patients. Other networks such as backward projection neural networks can produce similar results but 

require more time for training as in [8].  

Authors of [9] selected an optimal feature set by utilizing a genetic algorithm and empirical mode decomposition 

(EMD) where the resulting features were fed to a support vector machine for classification. Also, in [10], the 

authors used a combination of supervised active learning and unsupervised learning with autoencoder and softmax 

for feature learning and a deep neural network for classification according to the standards of Association for the 

Advancement of Medical Instrumentation (AAMI). A wavelet coherence technique (WTC) was used in [11] and 

long-short term memory (LSTM) algorithm was used in [12] for identifying anomalies. Authors of [13] they deal 

with ECG beat as a binary image rather than a set of numeric features in detecting the abnormalities. 

In [14], their proposed algorithm was an unsupervised method based on brute force discord detection (BFDD) and 

applied on the ECG. Authors of [15] proposed a supervised approach based on Convolutional Neural Networks for 

ECG classification; they proposed a modification of CNNs in which the convolutional layers are trained by 

unsupervised methods. 

There are many anomaly detections approaches, both supervised (e.g. support vector machines and decision trees 

[16]) and unsupervised (e.g. clustering). However, most anomaly detection methods are for batch data processing, 

and unsuitable for real-time streaming applications. The online analysis of data streams poses challenges, such as 

the learning of new concepts and developing algorithms that work in time sensitive and computationally 

constrained environments [17]. 

Common previous solutions for anomaly detection use machine learning methods. Usually, they are supervised 

learning techniques that require a training sample of normal behavior as training model, and in other cases, an 

unusual set of patterns may be required. However, in many real-time settings, it is a difficult task to obtain this prior 

knowledge. Therefore, unsupervised learning techniques are used to attempt to identify abnormal patterns, which 

adjust the knowledge model directly from the input stream [18].  

The detection performance of these statistical techniques can be sensitive to thresholds and window size. This 

sometimes results in many false positives in the detection of anomalies as data changes, requiring frequent updates 

of thresholds. Therefore, there are still opportunities to improve existing methodologies. 

 

Consequently, we consider these properties for effective extraction of ECG segments in real time and detection of 

anomalies in the streams. More recently, cortical-like algorithms such as the Hierarchical Temporal Memory 
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(HTM) have been a promising technique for several real-world prediction tasks. However, very little work has been 

done on applying cortical-like algorithms to time series data such as ECG. We utilize the HTM in our ECG 

diagnosis system.  

 

The main objective of this paper is to detect changes in data behavior from incoming ECG data. Our aim is to 

diagnose ECG by investigating healthy ECG and ECG with cardiological disorders by detecting anomalies in ECG 

signals. The ECG signals are presented in a streaming fashion and predictions are needed continuously to assist in 

the diagnosis of many heart diseases. As such, a continuous online learning technique is required to meet the 

research objective. ECG anomaly detection technique based on customized online sequence memory algorithm 

called Hierarchical Temporal Memory (HTM) [19] is proposed. The proposed anomaly detection technique is a part 

of our ECG diagnosis system to determine whether a real-time ECG stream contains any abnormal heartbeats. In 

case of abnormalities, the diagnosed anomalies and the diagnostic report will be transmitted via a network to a 

physician for appropriate actions.  

 

2. Overview of HTM 

A Hierarchical Temporal Memory (HTM) model was configured and built using Numenta NuPic software [19]. 

The HTM is implemented in the form of a series of algorithms known as Cortical Learning Algorithms (CLA) 

using neurobiological principles [20]. The HTM is based on machine intelligence algorithm and neural network for 

continuous learning tasks [14]. This section presents a brief outline of the HTM. The official literature [21] provides 

a more detailed description of algorithms and the basic concepts of HTM technique. Also, authors of [25] introduce 

a comparison with existing machine learning techniques like neural networks such as Bayesian networks against the 

HTM [26]. 

 

The HTM consists of layers and regions as shown in Fig. 1. Each layer learns in unsupervised manner by finding 

patterns in the entry sequence and patterns over time.  An HTM region is logically includes a set of columns. Each 

column in a region is linked to a single subset of the input bits.  

 

 
Fig. 1. Simple hierarchy figure of four HTM regions arranged in a four-level [23] 

 

 

In each layer, the columns composed of cells as in Fig. 2 that are interconnected with other cells from other 

columns. Each cell is activated by an input in its column [20]. The cells of each column are connected to the cells of 

several other columns, likewise the columns are connected to the output of several columns in their input spaces. 

Their initial connections are usually set on random basis [20]. The gray cells in Fig. 2 introduces active cells. 
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Fig. 2. From a conceptual perspective, the HTM columns are arranged in a two-dimensional array [20] 

 

When the HTM gets a new pattern, it tries to match it to stored patterns. Predictions can only be done based upon 

previously received patterns sequences. The HTM does not understand the meaning of patterns; it only knows 

which patterns are likely to follow specific observed patterns [21]. The HTM is a distributed memory model that 

utilizes temporal information and requires less training compared to other conventional neural networks [20, 22]. It 

has three basic functions: encoding, learning and prediction. 

 

The encoding is a representation of the data set. It is based on the formation of sparse distributed representations 

(SDRs) from continuous stream of input patterns. The SDR is a binary array that most bits are zeros, and few are 

ones, the ones bits carry important semantic features of the data. The memory mechanism of the HTM is relied on 

the SDR. When the HTM receives a new pattern, it will be distributed to those individual cells to be memorized as 

SDR. The importance of using SDRs is to match similar inputs to similar representations and only needs to match a 

portion of the pattern is sufficient to ensure significant matching. 

 

The HTM learns what patterns are likely to follow each other, so learning how to predict future patterns. Each 

column of the HTM has possible connections to a random selection of the bits in an input space to the HTM (called 

potential bits). The HTM uses the concept of permanence to modify the connectivity between the input space and 

the columns. Permanence is a scalar value between zero and one and represents the strength of the connection. 

 

The learning function is composed of two basic algorithms [20]: 

1. HTM Spatial Pooler: converts an input of region into a sparse pattern. It learns the connections to each 

column from a subset of the inputs and uses inhibition to select a sparse set of active columns. Spatial term 

means that inputs share many active bits and pooled term means inputs are grouped into a common 

representation.  

 

2. HTM Temporal Pooler: makes predictions on the SDRs created by the HTM Spatial Pooler. Each cell has 

three conditions: active, predictive, or deactivated based on its connections. If the cell is active, it means it 

connects with other cells that were active just before. Cells can then be predictive when they are active by 

examining their connections. If all the cells do this, collectively they can store and recall sequences, and 

they can predict what will happen afterwards. When a column gets an input, only the predictive will then be 

activated. If the input is unexpected, all the cells in the column will be activated.  

 

Once completion of the learning, the transition between the SDRs can be memorized by the HTM and has the 

ability to predict a next input sequence based on the previous input. This makes the HTM very efficient for noise 

and missing data in a way that the prior input will help to generate a context of what needs to be expected. The 

following steps summarize how the HTM prediction performs new inputs: 

1. Create an SDR of the input by activating whole columns. 

2. Place the input into context by selecting among cells of the active columns. 

3. Predict future patterns based on learned transitions among SDRs. 
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3. The Proposed Real Time ECG Diagnosis System 

The main objective of the proposed system is to provide diagnostic decision for the ECG in real-time. As shown in 

Fig. 3, the input of the proposed system is an ECG signal stream, each stream is segmented into single cardiac 

cycles. The proposed system includes three modules. The first module is the Heartbeat Encoder Module which 

extracts the ECG wave fiducial points to convert the ECG characteristics into encoded bits (SDR). The second 

module is the Anomaly Detector Module which exploits encoded inputs in the automatic detection of heart 

abnormalities to help in the diagnosis of heart disease.  

 
Fig. 3. The Proposed Real Time ECG Diagnosing System 

 

3.1 General Heartbeat Encoder Module 

When ECG signals are streamed to the proposed system, the process of the ECG Signals Acquisition is responsible 

for segmenting these signals into a single beat cycle to be sent to the Encoder Module. Then, the signal smoothed 

by Band Pass Filter process [23] to remove undesired frequency noise components arising from the operation of 

other organs. Since the presence of noise makes it more difficult to reliably detect the fiducial points (QRS, P wave 

and T wave as shown in Fig. 4). Base-line wandering can mask some important features of the ECG,  it is caused by 

variable electrode-skin impedance, patients movements and breathing [23].  When ECG signal noise is removed, 

Multilevel Teager Energy Operator algorithm [MTEO] algorithm [23] is used to detect ECG signal fiducial points 

as shown in Fig. 4. The Teager energy operator (TEO) is a time-frequency analysis algorithm and has been 

employed in many different signal processing applications. It uses principal component analysis (PCA) to reduce 

the number of templates and fiducial points and, as a result, reduce the correlation computation load and improve 

calculation speed [24]. 

 
Fig. 4. Peaks of Single Beat  
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Fig. 5. The Starting Points for Each Wave 

 

After the peaks are detected, they are used to find the beat characteristics by detecting the starting positions for each 

wave as shown in Fig. 5. The beat segments and intervals can be fetched as shown in Fig. 6. These values can 

describe the ECG features that indicate the electrical activity of the heart and are used for additional investigations 

or diagnosis. 

 

 
Fig. 6. Examples for Normal Values Ranges in Segments and Intervals 

 

The algorithm used to detect the start and end points of the wave takes advantage of the fact that the wave 

contributes to a significant derivative, except around its extrema [25]. The algorithm begins at the peak of the wave 

and looks for the maximum derivative near the beginning and end of the wave. There are three steps in this 

algorithm: 

1) Detection: use the maxima value of the wave, then follow this direction until the absolute derivative falls 

below a certain fraction of the maximum. 

2) Windowing: include the portion of the wave between the maximum segment and the segment with the same 

electric level.  

3) Detecting: the lower the threshold, the higher separation points relative to the wave maximum. 

 

All extracted features are converted into an SDR that can be fed into the HTM. An SDR is given by a binary array 

that has a fixed number of bits. Different array lengths can be used. Only 2% of bits are ones, referred to as active 

bits. The zero bits are the inactive bits. In an SDR, two inputs with similar semantic meaning must have similar 

SDR representations. Consequently, they must have same equal bits because SDRs arrays are compared position by 

position [26]. The encoding process is responsible for determining which output bits should be ones, and which 

should be zeros in SDRs, for given ECG signal features to capture the important semantic characteristics of the 

data.  

 

Certain aspects are taken into consideration when implementing this conversion process [27]: 

 

1. Semantically similar beats should result in SDRs with overlapping active bits. 

https://electric.askdefine.com/
https://potential.askdefine.com/
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2. The same input should always generate the same SDR as the output. 

3. The output should have the same dimension (total number of bits) for all inputs. 

4. The output should have similar sparsity for all inputs and have enough one-bits to deal with noise and sub-

sampling. 

 

This process encodes different frequency ranges of ECG features values. At first, the normal ranges of features are 

segmented to set of buckets in the SDR. Values above or below the normal feature ranges will be represented 

differently. Fig. 7 presents an example for the SDR, where the active bits represent that the value falls into the 

normal bucket of PR interval. The encoder encodes the numeric value into an array of bits. The output is 0's except 

for an adjacent block of 1's.  

 

 
Fig. 7. SDR Example 

 

The location of this adjacent block continually varies with the input value for each ECG feature. The standard 

normal values of ECG features are presented in Table 1. 

 
Table 1. Normal Values of ECG Features 

 ECG Features Normal Values 

PR interval 120-200 ms 

PR segment 50-120 ms 

QRS complex 80-100 ms 

ST segment 80-120 ms 

ST interval <320 ms 

QT interval 300-440 ms 

 

 

Normal values [28] fall within the range of normal feature, and they are treated as similar because their values 

overlap with the values in similar ranges. If the value is outside the given range, it will be captured in a different 

way. This is done because numbers that are in the same range will share ones’ bits between them. On the other 

hand, numbers that are not within the specified ranges will not share any ones’ bits. Each new value is therefore 

processed according to its relation to the specified range.  

 

The steps for the encoding process can be outlined as follows: 

1. Segment the SDR into a number of buckets based on the normal values ranges for each feature. 

2. Calculate the range as (range = MaxValue − MinValue). 

3. Choose how many number active bits for each representation, w. 

4. Calculate the total number of bits n = buckets + w - 1 

5. For a given value v, define its feature bucket. 

6. Create the encoded representation starting with n bits disabled, and then set the consecutive w bits from the 

bucket index chosen to be active. 

 

The role of the encoder in the proposed diagnosis system is essential. Its output of different representations to SDR 

will be fed to the HTM algorithm used by the Anomaly Detector Module. 

 

3.2 Anomaly Detector Module 
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The Anomaly Detector Module is responsible for detecting abnormal values for ECG features to aid in the 

diagnosis of heart disease using HTM. HTM adopts a continuous learning model, it does not need to store a training 

dataset like most other anomaly detection algorithms. Instead, it learns from each data point using unsupervised 

Hebbian-like learning rule [29].  

The proposed anomaly detection module computes a raw anomaly score that measures the deviation between the 

model’s expected input and the actual input. It can be calculated based on the intersection between the expected and 

actual sparse vectors.  

As described earlier, spatial pooling is about adjusting the connections between columns and the input space. Also, 

temporal pooling is about adjusting the connection between cells of columns. Both the spatial and temporal pooling 

works according to the principle that cells or columns that activate together reinforce their connections (known as 

permanence).  

 

The HTM spatial pooler forms connections from spatial pooler columns to a subset of the input space (known as 

potential connections). Different input patterns lead to different levels of columns activation. Thus, an inhibition 

mechanism is used to ensure that a small fraction of the columns that receive most inputs is active within the 

inhibition radius. The inhibition function is defined to achieve a relatively constant percentage of active columns, 

even when the number of active input bits varies significantly. In addition to inhibition, another mechanism known 

as boosting allows less activated columns to be more activated and the more activated neurons to be less activated, 

thus allow more complex patterns. The permanence of the connections is adjusted according to the Hebbian rule; 

for each active column, active inputs are reinforced, and inactive inputs are punished [30]. After a defined number 

of iterations, these connections are adjusted, and temporal pooling is performed based on a cell state (active, 

predicting or deactivated). 

 

Each cell will examine its connections and if some of them are active then it will change to a predictive state. When 

a column received an input, only cells in predictive mode are then activated. If no cells are at this stage, then all the 

cells in the column will be activated because the input is unexpected. When a cell is activated, it examines other 

cells in other columns that were active earlier and then strengthen the connection with them. The cell’s connections 

with other inactive cells will be weakened. If any of the cells in a column have not been predicted, then all the cells 

are activated (known as bursting). HTM calculates the anomaly score which corresponds to the fraction given by 

the number of bursting columns divided by the total number of active columns [26]. 

 

HTM specifies an anomaly score (s) for each new pattern it receives as follows: 

 

1. If an incoming pattern was predicted, then s = 0.  

2. If a pattern was not predicted at all, then s = 1. 

3. If a pattern is partially predicted, then 0 < s < 1 

 

The actual score depends on whether the actual pattern received is “similar” to the expected pattern. The similarity 

is determined by the SDR. The greater the overlap between the actual and predicted bits in the column space, the 

lower the anomaly score. At the beginning of the training, the anomaly score will be high because most of the 

patterns will be new. As HTM learns, the anomaly score decreases until there is a change in pattern stream [26]. 

 

There are still no specific standards for selecting parameters values in a HTM implementation as described in [22, 

29]. As presented by [29], the parameters should be adjusted to fit into the problem domain. Not all parameters are 

covered in this section due to excessive number of parameters. HTM is customized and configured to be applicable 

to our proposed anomaly detection module. The module follows all layer configurations and recommendations by 

[19].  

 

4. Experimental Environment 
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The MATLAB 2018 software was used for ECG analysis and Numenta NuPIC [19] software was used for the HTM 

model. Experiments were run on Windows7, Inter Core 7, 6 GB of main memory, 2.60GHz CPU and 1TB hard 

disk.  

 

4.1 Dataset  

 

The proposed system was evaluated using QT datasets [31] taken from PhysioNet (http://www.physionet.org), 

which is used by most researchers. It contains a total of 105 cases, each fifteen minutes long with two channel 

ECGs. It consists of T-wave morphologies in cases chosen from the supraventricular arrhythmia, MIT-BIH 

arrhythmia, sudden death, long-term, and ST change, European ST-T databases and BIH normal. This dataset 

includes records of healthy people and records of patients with cardiological disorders. All annotations were 

manually reviewed to select twenty-two records with a normal ECG rhythm and the rest of records has abnormal 

ECG rhythm. All records were sampled at 250 Hz. In each record, between 30 and 100 representative heartbeats 

were manually annotated by cardiologists. The beginning, peak and end of the P-wave, beginning and end of the 

QRS-complex, peak and end of the T-wave are annotated. Thirty consecutive beats of the dominant morphology 

were annotated in each case. An example of a record with normal beats (annotated by N) and contains 

cardiovascular disorder (Premature ventricular contraction) annotated by V is shown in Fig. 8. 

 

 
Fig. 8. Part of QT Database Signal  

 

4.2 Experimental Setup 

 

Multiple parameters of the HTM algorithm should be set to evaluate our system like the number of columns, the 

number of cells in each column and their connections. The parameters of the spatial pooler function which 

overlapping input patterns map to the same sparse distributed representation are summarized in the following which 

Table 2. 

 
Table 2. Spatial Pooler Specifications 

Spatial Pooler Specifications 

W Number of adjacent block of 1's 

Min Value The minimum value of the input value. 

Max Value The maximum value of the input value. 

Range Equals (Maxval – Minval) 

Radius Inputs separated by more than, or equal to this radius value will have non-

overlapping representations. 

N Number of bits in the SDR: 

N = (W * (Range/Radius)) + (2 * (W-1)/2).   

Resolution Inputs separated by more than, or equal to this resolution value will have 

different representations. 

Resolution = Radius / W 

Column Group of one or more cells that work as a unit in an HTM Region.  

Input Dimension A list representing the dimensions of the input, where each value 

represents the size of the dimension. 

Column Dimension Total number of columns. 

Cells per Column Total number of cells per column 

Potential Radius 

 

The percent of the inputs that column can be connected to.  If set to 1, the 

column will be connected to every input within its potential radius.  

Max Boost 
 

Each column's overlap gets multiplied by a boost factor before it gets 

considered for inhibition.   
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The used parameters for temporal memory function which the process of forming a representation of a sequence of 

input patterns are presented in Table 3. 

Table 3. Temporal Memory Specifications 

Temporal Memory Specifications 

Permanence - A scalar value that indicates the connection state of the 

cells. The acceptable values are [0,1]. 

- A cell can be in the following states: 

 Connected: permanence value is above a 

threshold. 

 Potential: permanence value is below a 

threshold. 

 Unconnected: does not have the ability to 

connect. 

- Learning in an HTM region is accomplished by 

modifying permanence values of potential synapses.  

Initial Permanence - Spatial pooler start to pool the initial permanence values 

for cells and connected inputs. 

- Permanence values are increased for cells connected to 

input bits that are turned on and decreased for cells 

connected to inputs bits that are turned off.  

- Initial permanence of a new input 

 

Connected Permanence 

 

If the permanence value for adjacent cells is greater than 

this value, it is said to be connected. 

Key Window Size Number of inputs used in the computation of the moving 

average 

Min Threshold  Minimum segment activity for learning. 

 

 

5. Evaluation of the Proposed Anomaly Detection Technique 

The confusion matrix is used to assess the performance of our module. The performance based on how our system 

can detect the abnormal beats in the tested signals [32]. 

 

The main metrics that are used to track the performance of different configurations for our model are presented in 

Table 4, TP, TN, FP, and FN, respectively represent True Positive, True Negative, False Positive, and False 

Negative 

 True positive = correctly identified 

 False positive = incorrectly identified 

 True negative = correctly rejected 

 False negative = incorrectly rejected 

Table 4. The Main Performance Metrics 

Metric Formula 

Accuracy  
     

           
 

 

Recall 

 

  

     
 

Precision   
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Several experiments were run in different configurations to study the influence of the number of parameters and 

their values on our ECG dataset and to get the best configuration. The correct configuration of the algorithm to our 

problem area would significantly improve the results that improve system performance. 

 

From Table 5 to Table 9 present different setup settings for the HTM. 1st configuration evaluates the default 

parameters values for the HTM. The second configuration evaluates the modifications of the potential radius and 

max boost values. The third configuration increases the initial permanence and connected permanence values, 

changing the min threshold value but not affecting the results. The fourth and fifth configurations set the same 

permanence and connected permanence values, changing the min threshold value and max boost didn't affect the 

results of the evaluation.  

 
Table 5. First Configuration Parameters with Results 

1
st
 Configuration Parameters 

Column 

Dimension 

Cells Per 

Column 

Potential 

Radius 

Max 

Boost 

Initial 

Permanence 

Min 

Threshold 

Connected 

Permanence 

512 8 9 10 0.4 4 0.5 

Evaluation for 1
st
 Configuration 

Accuracy (%) Recall (%) Precision (%) 

50 83 55 

 
Table 6. Second Configuration Parameters with Results 

2nd Configuration Parameters 

Column 

Dimension 

Cells Per 

Column 

Potential 

Radius 

Max 

Boost 

Initial 

Permanence 

Min 

Threshold 

Connected 

Permanence 

512 8 3 5 0.4 4 0.5 

Evaluation for 2
nd

 Configuration 

Accuracy (%) Recall (%) Precision (%) 

75 93 78 

 
Table 7. Third Configuration Parameters with Results 

3
rd

 Configuration Parameters 

Column 

Dimension 

Cells Per 

Column 

Potential 

Radius 

Max 

Boost 

Initial 

Permanence 

Min 

Threshold 

Connected 

Permanence 

512 8 3 5 0.8 1 0.8 

Evaluation for 3
rd

 Configuration 

Accuracy (%) Recall (%) Precision (%) 

26 44 39 

 

 
Table 8. Fourth Configuration Parameters with Results 

4
th

 Configuration Parameters 

Column 

Dimension 

Cells Per 

Column 

Potential 

Radius 

Max 

Boost 

Initial 

Permanence 

Min 

Threshold 

Connected 

Permanence 

512 8 3 10 0.8 4 0.8 

Evaluation for 4
th

 Configuration 

Accuracy (%) Recall (%) Precision (%) 

100 100 100 

 
Table 9. Fifth Configuration Parameters with Results 

5
th

 Configuration Parameters 

Column 

Dimension 

Cells Per 

Column 

Potential 

Radius 

Max 

Boost 

Initial 

Permanence 

Min 

Threshold 

Connected 

Permanence 

512 16 3 5 0.8 4 0.8 
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Evaluation for 5
th

 Configuration 

Accuracy (%) Recall (%) Precision (%) 

100 100 100 

 

 

As shown in Fig. 9, the fourth and fifth configurations are the best ones that improve the results. The results showed 

that the increasing value of the permanence or cells connection strength improves the accuracy and overall system 

performance. Furthermore, when the number of other parameters is considered, the accuracy of the system has 

increased. 

 

 
            Fig. 9. Performance Evaluation for Different HTM Configurations 

 

The configurations in Table 10 are used to study the effect of increasing or decreasing the column dimensions on 

the result relative to the best configuration. The tested dimensions are 128, 512, 1024 and 2048 dimensions. As 

shown in Table 11 and Fig. 10, performance decreases with both the largest and smallest column dimensions. 

 
Table 10. Configuration Parameters for Different Column Dimensions 

Configuration Parameters 

Potential 

Radius 

Max 

Boost 

Initial 

Permanence 

Min 

Threshold 

Connected Permanence 

3 5 0.8 4 0.8 

 

Table 11. Performance Metrics for Different Column Dimensions 

Column 

Dimension 

Cells Per 

Column 

Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

Specificity 

(%) 

2048 32 33 100 33 0 

1024 16 46 62 59 12.5 

512 8 100 100 100 100 

128 8 68 82 78 20 

 

 

0 20 40 60 80 100 120

Accuracy (%)
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Precision (%)

Performance Evaluation for Different Configurations 
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2nd config.

1st config.
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Fig. 10. Performance Evaluation for Different Column Dimensions 

 

As shown in Fig. 10, performance achieves low accuracy at higher dimensions values because of the complex input 

representation due to the large pooling space. In addition, selecting very small column dimensions decreases the 

system performance, as the very small pooler space causes inaccurate predictions for the next input during the 

temporal memory learning phase. Table 11 demonstrates a comparison of accuracy between our approach against 

other supervised and unsupervised techniques for ECG anomaly detection. The results show an improvement in the 

accuracy of the anomaly detection module in our proposed approach.  

 
Table 11. Comparison of Accuracy between our Approach and Other Literatures 

Literature (S/U) * Method Accuracy 

Batra et al. [33] S SVM 83.04% 

Pereira et al. [34] S SVM 98.43% 

Nasiri et al. [35] S SVM and Genetic Algorithm 93% 

Karim et al. [36]  S F-t ALSTM-FCN 94.96% 

Malhotra et al. [37]  S SAE-C 93.40% 

Pereira et al. [34] U VRAE+Clust/W 95.22% 

Pereira et al. [34] U K-means 95.96% 

Ceylan et al. [38] U Fuzzy Clustering Neural Network Algorithm 99% 

Our approach U HTM 100% 

*S= Supervised, U=Unsupervised 

 

6. Conclusion 

The main goal of this paper is to detect changes in data behavior from the incoming ECG data streaming. Therefore, 

an effective streaming anomaly detection mechanism is required to achieve our goal. The proposed anomaly 

detection technique is a part of our ECG diagnosis system to help in diagnosing cardiac disorders. In this paper, we 

applied an online sequence memory algorithm called Hierarchical Temporal Memory (HTM) to ECG anomaly 

detection problem domain. Various configuration parameters for the HTM have been tested and evaluated. The 

customized configuration proves a significant improvement in the performance of the anomaly detection module in 

our proposed ECG diagnosis system.  
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