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Abstract
Owing to recent advances in thoracic electrical impedance tomography (EIT), a patient’s
hemodynamic function can be noninvasively and continuously estimated in real-time by
surveilling a cardiac volume signal (CVS) associated with stroke volume and cardiac output. In
clinical applications, however, a CVS is often of low quality, mainly because of the patient’s
deliberate movements or inevitable motions during clinical interventions. This study aims to
develop a signal quality indexing method that assesses the influence of motion artifacts on
transient CVSs. The assessment is performed on each cardiac cycle to take advantage of the
periodicity and regularity in cardiac volume changes. Time intervals are identified using the
synchronized electrocardiography system. We apply divergent machine-learning methods, which
can be sorted into discriminative-model and manifold-learning approaches. The use of
machine-learning could be suitable for our real-time monitoring application that requires fast
inference and automation as well as high accuracy. In the clinical environment, the proposed
method can be utilized to provide immediate warnings so that clinicians can minimize confusion
regarding patients’ conditions, reduce clinical resource utilization, and improve the confidence
level of the monitoring system. Numerous experiments using actual EIT data validate the capability
of CVSs degraded by motion artifacts to be accurately and automatically assessed in real-time by
machine learning. The best model achieved an accuracy of 0.95, positive and negative predictive
values of 0.96 and 0.86, sensitivity of 0.98, specificity of 0.77, and AUC of 0.96.

1. Introduction

Over several decades, continued advances in electrical impedance tomography (EIT) have expanded the
clinical capability of real-time cardiopulmonary monitoring systems by overcoming the limitations of
traditional methods, such as cardiac catheterization through blood vessels [4, 9, 18, 19, 29, 30, 39, 43, 60].
Recently, based on thoracic EIT, a patient’s hemodynamic function can be noninvasively and continuously
estimated in real-time by surveilling a signal extracted using EIT, the so-called cardiac volume signal (CVS),
which has a strong relationship with key hemodynamic factors such as stroke volume and cardiac output
[5, 28, 54]. In clinical applications, however, a CVS is often of low quality, mainly because of the patient’s
deliberate movements or inevitable motions during clinical interventions such as medical treatment and
nursing. Because postural change causes movement of the chest boundary to which existing EIT solvers are
highly sensitive owing to time-difference-reconstruction characteristics [1, 8, 33, 38, 47], motion-induced
artifacts are generated in the CVS, as shown in figure 1.
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Figure 1.Motion-induced artifacts in cardiac volume monitoring using EIT. Patient’s deliberate movements or inevitable motions
during clinical intervention cause severe artifacts in a CVS.

CVS extraction is to separate a cardiogenic component from the EIT voltage data, resulting from current
injections at electrodes attached across a human chest. Since the development of impedance cardiography
more than 40 years ago [29], there have been numerous efforts for the accurate and reliable separation of
weak cardiogenic component toward the clinical use. In the studies [18, 30, 60], effective techniques were
developed, but they need the hypertonic saline injection as a contrast agent [9], which may decrease the
clinical capability in terms of non-invasive and long-term continuous monitoring. Recently, Jang et al [28]
developed a contrast agent injection-free separation method that is based on spatial filtering using the
statistical independence assumption of the cardiogenic impedance change to other changes. However, its
practical performance may be restricted due to the strong assumption. Lee et al [41] then suggested a new
spatial-filtering method that instead takes advantage of timing constraints from electrocardiography (ECG)
and validated its effectiveness from in vivo animal data. Thanks to these endeavors, effective and fully
non-invasive CVS extraction is currently capable with motion-free measurements where voltage data are
mainly influenced by air and blood volume changes in the lungs, heart, and blood vessels comprehensively,
but not by motions. In contrast, achieving the CVS extraction in motion-influenced measurements is still a
long-term challenge. Postural changes in EIT measurements cause strong distortion of the voltage data [1,
59] and easily disturb the extraction of relatively weak cardiogenic signals [7, 34, 42].

Handling motion interference has been a huge challenge in most EIT-based techniques for enhancing
clinical capability, but not researched much yet [57]. Adler et al [1] and Zhang and Patterson [59]
investigated the negative motion effect in the EIT. Soleimani et al [46] and Dai et al [17] proposed a
motion-induced artifact reduction method by reconstructing electrode movements along with conductivity
changes. Lee et al [38] analyzed motion artifacts in EIT measurements and proposed a subspace-based
artifact rejection method. Yang et al [57] suggested the discrete wavelet transform-based approach that
reduces motion artifacts of three specific types. However, clinical motion artifacts are still not effectively
addressed because of practical motion’s immense diversity and complexity. Accordingly, for the time being,
the EIT-based hemodynamic monitoring system attempts to be preferentially developed toward filtering
motion-influenced CVSs rather than recovering them. In the clinical environment, this filtration can provide
immediate warnings so that clinicians can minimize confusion regarding the patient’s condition, reduce
clinical resource utilization, and improve the confidence level of the monitoring system [16].

This study aims to develop a signal quality indexing (SQI) method that assesses whether motion artifacts
influence transient CVSs. To take advantage of the periodicity and regularity in cardiac volume changes, the
assessment is performed on each cardiac cycle, whose time intervals are identified using the synchronized
ECG system. We leverage machine learning (ML), which has provided effective solutions for various
biosignal-related tasks through feature disentanglement of complicated signals [6, 10, 14, 26, 36, 50, 51, 55].
The use of ML could be suitable for our real-time monitoring application that requires fast inference and
automation as well as high accuracy.

We apply divergent ML methods, which can be sorted into discriminative-model and manifold-learning
approaches. The discriminative-model approach is first considered, where an SQI map is directly trained
using a paired dataset of CVS and its label [12, 22, 48]. Although this approach provides a high performance
on a fixed dataset, owing to the class imbalance problem, there is a risk of overfitting on motion-influenced
CVS data in the scope of generalization or stability [11, 15, 23, 52]. Motion artifacts can vary considerably in
real circumstances, whereas collecting CVS data in numerous motion-influenced cases is practically limited
because of the high cost, intensive labor, security, and ambiguity in clinical data acquisition and annotation
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[13, 49, 53, 61]. To handle this conceivable difficulty, the manifold-learning approach [3, 25, 27, 31] is
examined as an alternative. It does not learn irregular and capricious patterns of motion-influenced CVSs
and only takes advantage of the learned features from motion-free CVSs.

Numerous experiments have been conducted using actual EIT data. Empirical results demonstrate that
discriminative and manifold-learning models provide accurate and automatic detection of
motion-influenced CVS in real-time. The best discriminative model achieved an accuracy of 0.95, positive
and negative predictive values of 0.96 and 0.86, sensitivity of 0.98, specificity of 0.77, and AUC of 0.96. The
best manifold-learning model achieved an accuracy of 0.93, positive and negative predictive values of 0.97
and 0.71, sensitivity of 0.95, specificity of 0.80, and AUC of 0.95. The discriminative models yielded a more
powerful SQI performance; in contrast, the manifold-learning models provided stable outcomes between the
training and test sets. Regarding to practical applications, the choice of two models relies on what should be
emphasized in the monitoring system in terms of performance and stability.

2. Methods

This study considers the 16-channel system of the thoracic EIT, where 16 electrodes are attached along the
human chest (see figure 2). The EIT system is assumed to be synchronized with the ECG system, which
provides the time interval for each cardiac cycle. The EIT device measures a set of voltage differences by
injecting an alternative current of I (mA) through pairs of adjacent electrodes while keeping all other
electrodes insulated. At sampling time t, the following voltages are acquired:

{V j,k
t : V j,k

t = U j,k
t −Uj,k+1

t , j ∈ I,k ∈ I\{ j, j+ 1}} (1)

where I is an index set defined by I = {1,2, . . . ,16}, Ek is the kth electrode, and U j,k
t is the electrical

potential on Ek subject to the current injection from Ej to Ej+1. For notational convenience, E0 and E17 can
be understood as E16 and E1, respectively. Once the current is injected from E j to E j+1 for some j ∈ I , the
voltage is measured at each of the 16 adjacent electrode pairs (Ek,Ek+1)k∈I . Among the 16 voltages, Vj,j−1

t ,
Vj,j
t , and Vj,j+1

t are discarded to reduce the influence of the skin-electrode contact impedance [47]. Because
we perform 16 independent current injections, in total, 208 (= 16× 13) voltages are obtained and used to
produce the CVS.

2.1. CVS extraction using EIT and influence of motion
A transconductance (column) vector gt ∈ R208 can be defined using the voltage data (1) as follows:

gt =

[
I

R(V1,3
t )

, . . . ,
I

R(V1,15
t )

, . . . ,
I

R(V16,2
t )

, . . .
I

R(V16,14
t )

]T
(2)

where T represents the vector transpose andR is an operation for extracting the real part of a complex
number. Here, gt is updated every 10 ms.

A CVS, denoted by xt ∈ R, is obtained by

xt = wTġt (3)

where w ∈ R208 is a weighting (so-called leadforming) vector and ġt is time difference of gt given by

ġt = gt − gt0 for reference time t0 (4)

In the absence of motion, the transconductance ġt can be expressed by

ġt = ġairt + ġbloodt (5)

where gairt and gbloodt are transconductance vectors related to air and blood volume changes in the lungs
and heart, respectively. The weighting vector w is designed to provide

wTġt = wT
(
ġairt + ġbloodt

)
= wTġbloodt . (6)

See figure 2. Kindly refer to [41] for details on determining w. Even though the cardiogenic signal gbloodt is
weak, it can be accurately decomposed from the data gt.
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Figure 2. 16-channel system of thoracic EIT and CVS extraction. The EIT machine measures voltage differences by injecting
currents via electrodes attached along human chest. A CVS xt is extracted by taking suitable weighting w to the time-difference
transconductance ġt, which is defined by measured voltage data. Here, w is called as a leadforming vector, which is designed to
separate a cardiogenic trans-conductance change from superposed data ġt [41].

Figure 3. Schematic description of ML-based signal quality assessment for cardiac volume monitoring in EIT.

In light of the previous analysis in [38], the following explains why the quality of the CVS is degraded by
motion, as shown in the middle part of figure 1. In the presence of motion, the transconductance ġt can be
approximated by

ġt ≈ ġnormal
t + ġmotion

t (7)

where ġnormal
t = ġairt + ġbloodt and ġmotion

t is the motion-induced effect. Appendix A presents details
of (7). Determining the vector w itself can be considerably affected by motion artifacts [41]. Moreover, even
if w satisfies (6), we have

xt = wTġt ≈ xnormal
t + xmotion

t (8)

where xnormal
t = wTġbloodt and xmotion

t = wTġmotion
t . The last term xmotion

t describes motion artifacts
in the CVS.

2.2. CVS quality assessment and data preprocessing
This study aims to assess the CVS (xt) for detecting motion-induced signal quality degradation. See figure 3.
This can be accomplished by developing an SQI map f : xt 7→ yt such that

f(xt) = yt =

{
1 if xmotion

t ≈ 0

0 if xmotion
t 6≈ 0.

(9)

However, it is arduous to achieve (9), where the assessment is conducted on an individual CVS at every
sampling time. Instead, we take advantage of the periodicity and regularity of cardiac volume changes
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Figure 4. From the monitoring system, electrocadiography and CVSs are obtained. By identifying a cardiac cycle through
electrocadiography data (R-wave peak detection), we extract CVSs at the corresponding cycle and then lastly apply normalization
in terms of scale and size.

according to the heartbeat. The time interval of each cardiac cycle is identified using a synchronized ECG
system.

Our quality assessment is conducted on every cardiac cycle of CVS, where a cardiac cycle is defined by the
time interval consisting of two consecutive ECG R-wave peaks as the end points. For a given time tcyc, let the
interval [tcyc, tcyc+∆tcyc] be the corresponding cardiac cycle, where∆tcyc is assumed to be
∆tcycle = 10ms× (v− 1) for some v ∈ N\{1}. Here, N denotes the set of positive integers. A vector

gathering all CVSs during the cycle, denoted by Xtcyc ∈ Rv, is defined as

Xtcyc =
[
xtcyc ,xtcyc+10ms, . . . ,xtcyc+10ms×(v−1)

]T
. (10)

The map f in (9) can be modified into

f(Xtcyc) = yt =

{
1 for normal Xtcyc
0 for motion-influenced Xtcyc .

(11)

To find f in (11), we leverage ML, which can learn the domain knowledge of normal and
motion-influenced CVSs from a training dataset of N data pairs {X(i),y(i)}Ni=1. Prior to ML applications, the
following issues need to be addressed in the CVS data. First, CVSs have significant inter-subject and
intra-subject variability. This is because cardiac volume varies depending on various factors, including sex,
age, condition, time, and body temperature. Therefore, scale normalization is required to enhance the
stability and performance of ML while mitigating the high learning complexity associated with
scale-invariant feature extraction [20, 56]. Second, the dimensions of the input CVS data in (11) do not
match each other (i.e. v is not constant) owing to heart rate variability [44]. Because most existing ML
methods are based on an input with consistent dimensions, size normalization is required. Figure 4
schematically illustrates the overall process.

2.2.1. Scale normalization
A simple method of normalizing the scale is to rescale the CVS data for individual cardiac cycles. Specifically,
for a given CVS vector Xtcyc ∈ Rv, the scaling factor S is obtained using

S =max
i∈V

|xtcyc+10×i(ms)| (12)

where the index set V is given by V = {0,1, . . . ,v− 1}. Normalized CVS data, denoted by Xtcyc, are obtained

by

Xtcyc =
Xtcyc
S

. (13)

However, this scaling may not be appropriate to our application for the following reason. Abnormalities in
CVS data include sudden increases or decreases in signal amplitude as well as irregular deformations of the
shape profile. The normalization in (13) can contribute to ignoring rapid amplitude changes.
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This study uses the following subject-specific scale normalization strategy. When the EIT device is used to
monitor a certain subject, it is supposed that during the initial 20 s calibration process, the device measures

the normal CVS data available for scale normalization. Let X subject be a set of corresponding CVSs given by

X subject = {x10×i(ms) : i =−1999,−1998, . . . ,−1}. (14)

Using the set X subject, a subject-specific scaling factor Ssubject is obtained by

Ssubject = max
x∈Xsubject

|x|. (15)

This scale factor Ssubject is used for the normalization in (13) instead of the naive factor S in (12).

2.2.2. Size normalization
To make the dimensions of the CVS data consistent, a CVS vector Xtcyc is embedded into Rν for a fixed

constant ν. In the empirical experiment, the embedding space dimension was to be larger than any
dimension of the CVS data in our dataset (ν = 150).

Two normalization methods are considered. The first approach is to resample ν points using linear
interpolation with v data points in Xt. For the stationary interval [0,1], the following linear interpolation
function L is constructed:

L
(

i

v− 1

)
= xtcyc+10(ms)×(i−1)for i = 0, . . . ,v− 1. (16)

Subsequently, we obtain the normalized vector Xtcyc ∈ Rν using

Xtcyc =

[
L(0),L

(
1

ν − 1

)
,L

(
2

ν − 1

)
, . . . ,L(1)

]T
. (17)

This method normalizes the signal profile of CVS data into the desired length (ν) with no significant loss,
but loses sampling time information. Second, the last value in Xtcyc (i.e. xtcyc+10(ms)×(v−1)) is padded up

to the desired length. This constant padding provides a vector Xtcyc ∈ Rν , expressed by

Xtcyc =[ xtcyc , . . . ,xtcyc+10(ms)×(v−2),xtcyc+10(ms)×(v−1), (18)

xtcyc+10(ms)×(v−1), . . . ,xtcyc+10(ms)×(v−1) ]
T (19)

where the part (19) corresponds to the padding. In contrast to the first method, this normalization can
preserve time information regarding sampling frequency, whereas the core profile of the CVS is supported at
different time intervals.

2.3. ML application
At this point, we are ready to apply ML for determining the SQI function (11). Collected from various
subjects and cardiac cycles, the following dataset is used:

{X(i)
,y(i)}Ni=1 (20)

where y(i) is the SQI label corresponding to X
(i)
. We note that X is the CVS data for a cardiac cycle of some

subjects and is normalized for both scale and size. In practice, the available training dataset (20) was highly
imbalanced, where there were relatively few negative samples (motion-influenced CVSs).

2.3.1. Discriminative-model approach
The discriminative-model approach trains the SQI map f : X 7→ y in the following sense:

f = argmin
f∈F

1

N

N∑
i=1

dist( f(X
(i)
),y(i)) (21)
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Figure 5. (a) Discriminative-model approach learns a SQI map f by using CVS and label data. (b) Manifold-learning approach

first learns common features of normal CVS data by finding a low dimensional manifoldMnormal. Signal quality assessment is
based on computing the residual between original CVS data and projected one onto or near the learned manifold.

where F is a set of learnable functions for a given ML model and dist is a metric that measures the difference
between the ML output f(X) and label y. See figure 5(a). In our application with high class-imbalance, the
following weighted cross-entropy can be used:

dist( f(X),y) =−ζposylog( f(X))− ζneg(1− y)log(1− f(X)) (22)

where ζpos and ζneg are the relative ratios of the positive and negative samples, respectively. Various
classification models can be used, such as the logistic regression model (LR) [12], multi-layer perceptron
(MLP) [22], and convolutional neural networks (CNNs) [48]. Detailed models used in this study are
explained in appendix B.1.

The discriminative model approach is a powerful method to guarantee high performance in a fixed
dataset. However, it might suffer from providing stable SQI results in clinical practice because of highly
variable negative samples. This is because these methods take advantage of learned information using only a
few negative samples [11, 15, 23, 52]. To achieve stable prediction, the manifold-learning approach can be
alternatively used [13, 53, 61].

2.3.2. Manifold-learning approach
The manifold-learning approach learns common features from positive samples (i.e. normal CVS) and uses
them to develop an SQI map. The remaining negative samples are utilized as auxiliary means for selecting a
hyperparameter. Figure 5(b) shows a schematic description of this process.

A set of positive samples is denoted by {X(i)
pos}

Npos
i=1 , where Npos denotes the number of positive

samples. In the first step, we learn a low-dimensional representation of Xpos by training an encoder
E : Xpos 7→ z and decoderD : z 7→ Xpos in the following sense [21, 27]:

(D,E) = argmin
(D,E)

1

Npos

Npos∑
i=1

‖D ◦ E(X(i)
pos)−X

(i)
pos‖22 (23)

where z is a low dimensional latent vector and ‖ · ‖2 is the standard Euclidean norm. The architecturesD and
E can be used in PCA [27], VAE [31], and β-VAE [25]. See more details in appendix B.2.

Borrowing the idea from [3], an SQI map f is constructed as follows: For a given CVS data X in any class,
a residual r is computed by

r= ‖X−D ◦E(X)‖2. (24)

The decoderD is trained to generate normal CVS-like output. In other words, operationD ◦E transforms X
to lie in or near the learned manifold using normal CVS data [47, 58]. Therefore, the residual r can be viewed
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as an anomaly score, where r is small if X is normal CVS data, and large if X is motion-influenced CVS data.
For some non-negative constant d, an SQI map f can be constructed using

f(Xt) =

{
1 if r⩽ d
0 if r> d

. (25)

The remainder of this subsection explains how the thresholding value d is determined by utilizing
negative samples as well as positive. By varying d from 0 to∞, a receiver operating characteristic (ROC)
curve is calculated, where a point in the ROC curve is obtained using a fixed d. We choose d such that
maximizing Youden’s J statistics, which is known as an unbiased metric in the class imbalance case [45]. The
value J is given by

Jd = Sensitivityd + Specificityd − 1 (26)

where

Sensitivityd =
Nd
TP

Nd
TP+Nd

FN
and Specificityd =

Nd
TN

Nd
TN+Nd

FP
. (27)

Here, Nd
TP, N

d
TN, Nd

FP, and Nd
FN respectively represent the number of true positives, true negatives, false

positives, and false negatives for predictions depending on a selected threshold value d. See appendix B.2.4.

3. Results

3.1. Data acquisition and experimental setting
Our dataset was obtained from healthy volunteers using an EIT-based hemodynamic monitoring device
(HemoVista, BiLab, South Korea). Synchronized ECG data were obtained with EIT and used to identify the
cardiac cycles. While lying in a hospital bed, each subject was requested to make intentional motions
mimicking postural changes in the clinical ward. A total of 16 140 CVS data were obtained regarding the
cardiac cycle.

Manual labeling was individually performed by two- and ten- years bio-signal experts (Nam and Lee).
Subsequently, they reviewed the results and made the final decision about CVS abnormality through an
agreement between them. The final labels were annotated into three classes: normal, ambiguous, and
motion-influenced. When classified as normal or abnormal by both experts with an agreement, CVS data
were annotated as normal or motion-influenced classes. The ambiguous class stands for CVS data in which
motion artifacts were included with high possibility, but the experts did not reach an explicit agreement
about motion influence. The assigned label is y= 1 for the normal class and y= 0 for the other classes. As a
result, 12 928 (80.09%), 1526 (9.45%), and 1686 (10.45%) samples were labeled as normal, ambiguous, and
motion-influenced classes, respectively.

For ML applications, a total of 16 372 CVS data were divided into 13 100 (80%), 1520 (10%), and 1520
(10%), which were used for training, validation, and testing, respectively. The data split was performed such
that CVS data obtained from a common subject did not exist between the three sets. For the training dataset,
labels for the ambiguous class were reassigned to y= 0.25. This was done to prevent the over-classification of
ambiguous classes.

ML experiments were conducted in a computer system with GeForce RTX 3080 Ti, Intel® Core™
X-series Processors i9-10 900X, and 128GB DDR4 RAM. Python with scikit-learn and Pytorch packages were
used for the ML implementation. When training the ML models, the Adam optimizer was consistently
employed, which is an effective adaptive stochastic gradient descent method [32]. Hyperparameters such as
epoch and learning rate were heuristically chosen based on the validation results. See details in appendix B.3.

3.2. Results of CVS quality assessment
We compared the performance of the ML-based CVS quality assessment results by using six metrics:
accuracy, positive and negative predictive values (PPV and NPV), sensitivity, specificity, and AUC. Accuracy,
PPV, and NPV were defined by

Accuracy=
NTP+NTN

NTP+NTN+NFP+NFN
,PPV=

NTP
NTP+NFP

,and NPV=
NTN

NTN+NFN
(28)

and AUC was the area under the ROC curve. NPV, specificity, and AUC should be emphasized in our
evaluation owing to the high-class imbalance (small negative samples).

8
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Table 1.ML-based CVS quality assessment results.

(a) SQI with scale and size normalization using linear interpolation.

Discriminative Model LR MLP1 MLP2 VGG16-3 VGG16-4 VGG16-5

Test Accuracy 0.8665 0.9323 0.9348 0.9468 0.9468 0.9437
PPV 1.0000 0.9790 0.9747 0.9525 0.9605 0.9679
NPV 0.1097 0.7241 0.7445 0.9047 0.8591 0.8083
Sensitivity 0.8643 0.9404 0.9479 0.9866 0.9776 0.9657
Specificity 1.0000 0.8860 0.8607 0.7215 0.7721 0.8185
AUC 0.6615 0.9506 0.9558 0.9709 0.9645 0.9653

Manifold-learning Model PCA VAE β-VAE CVAE β-CVAE —

Test Accuracy 0.8468 0.9066 0.9221 0.9292 0.9298
PPV 0.9510 0.9687 0.9672 0.9688 0.9739
NPV 0.4573 0.6181 0.6900 0.7100 0.7011
Sensitivity 0.8675 0.9218 0.9439 0.9486 0.9441 —
Specificity 0.7142 0.8095 0.7952 0.8047 0.8380
AUC 0.8735 0.9513 0.9489 0.9528 0.9603

(b) SQI with scale and size normalization using constant padding.

Discriminative Model LR MLP1 MLP2 VGG16-3 VGG16-4 VGG16-5

Test Accuracy 0.8664 0.9487 0.9518 0.9455 0.9487 0.9500
PPV 1.0000 0.9745 0.9767 0.9533 0.9655 0.9731
NPV 0.0826 0.7851 0.8065 0.8870 0.8433 0.8185
Sensitivity 0.8648 0.9651 0.9666 0.9844 0.9748 0.9681
Specificity 1.0000 0.8521 0.8652 0.7173 0.7956 0.8434
AUC 0.6628 0.9725 0.9669 0.9782 0.9683 0.9757

Manifold-learning Model PCA VAE β-VAE CVAE β-CVAE —

Test Accuracy 0.8809 0.8918 0.9214 0.9015 0.8861
PPV 0.9590 0.9660 0.9679 0.9731 0.9636
NPV 0.5333 0.5629 0.6694 0.5882 0.5467
Sensitivity 0.9014 0.9074 0.9407 0.9118 0.9029 —
Specificity 0.7450 0.7892 0.7941 0.8333 0.7745
AUC 0.9150 0.9206 0.9412 0.9170 0.9041

3.2.1. Discriminative models
The first and second rows of tables 1(a) and (b) show the quantitative evaluations of CVS quality assessment
using various discriminative models: LR, MLPs, and CNNs. The results in tables 1(a) and (b) differ in size
normalization: (a) linear interpolation and (b) constant padding.

MLPs and CNNs performed better than LR, which provided miserable NPV and AUC. MLPs and CNNs
outperformed each other in specificity and NVP respectively, while achieving comparable levels for the other
metrics. There was no significant performance gap depending on the size normalization.

One interesting observation was as follows: In our experiments, there seems to be a compensation
between specificity and NPV, depending on the emphasis on locality and globality. Enriching global
information on CVS data positively affected specificity; in contrast, local information helped improve NPV.
As the receptive field size in VGG16 increased (see appendix B.1), specificity tended to increase and NPV
decrease. In MLP, which is more flexible for catching global information than CNNs, specificity was highest,
and NPV lowest. In other words, the local information of CVS data is likely to play a crucial role in reducing
false negatives rather than false positives. From a practical point of view, reducing false negatives is more
desirable; therefore, using VGG16-3 or VGG16-4, which have the powerful ability to take advantage of
locality, can be an excellent option.

3.2.2. Manifold-learning models
Positive samples in the validation set were used for hyperparameter selection in training the encoder and
decoder. A threshold value was determined by using data from all the training and validation sets.

Figure 6 shows manifold projection results of test samples in normal and motion-influenced classes. An
input CVS is projected onto or near a manifold learned by positive samples. As desired, the residual (24)
tends to be small for normal samples and high for motion-influenced samples.
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Figure 6. Test samples and VAE-based projection results for (a) normal and (b) motion-influenced CVS data, where the red line is
original CVS data and the blue line is the correspondent CVS data projected by VAE. By the way, ROC curves for (c) VGG 16-4 and
(d) β-VAE are provided, where the blue and red lines correspond to the curves calculated using training and test sets, respectively.

Table 2. Results of ML-based CVS quality assessment with and without scale normalization.

With Scaling Without Scaling

Model VGG16-3 VAE VGG16-3 VAE

Accuracy 0.9468 0.9066 0.7862 0.7509
PPV 0.9525 0.9687 0.9763 0.9668
NPV 0.9047 0.6181 0.4038 0.3327
Sensitivity 0.9886 0.9218 0.7671 0.7373
Specificity 0.7215 0.8095 0.8945 0.8380
AUC 0.9709 0.9513 0.9067 0.8906

The third and fourth rows of tables 1(a) and (b) show the final assessment results using
manifold-learning models. The performance was comparable to that of discriminative models. We note that
the manifold-learning models never learned negative samples for classifier development. As shown in
figure 6(d), the manifold-learning model’s performance gap between training and test sets was very small.

There was a slight difference in performance for the manifold-learning models depending on the size
normalization. Linear interpolation promised a slightly better assessment of accuracy, NPV, and AUC than
the other. For the case of constant padding, because core profiles of CVS data are supported at different
intervals, the learning complexity can be increased, which is associated with invariant feature extraction to
the intervals. This may cause a slight drop in performance.

In our dataset, both discriminative and manifold learning models provided accurate detection of
motion-influenced CVS. The discriminative model yielded a more powerful SQI performance; in contrast,
the manifold-learning model provided stable outcomes between the training and test sets. Regarding
practical applications, the choice of two models relies on what should be emphasized in the monitoring
system in terms of performance and stability. Their ensemble is also worth considering.

To be precise, by taking advantage of both discriminative and manifold-learning models, one may design
an efficient warning system for motion-corruption. A specific example is as follows: LetWarning be a

warning system. The following three-level warning system can be designed: For given CVS data X,

Warning(X) =


normality if fdisc(X) = fmani(X) = 1,
caution if fdisc(X) 6= fmani(X),
warning if fdisc(X) = fmani(X) = 0,

(29)

where fdisc and fmani are learned discriminative and manifold-learning models. In the case that fdisc and
fmani provide a consistent assessment, the warning systemWarning gives clear normality or warning about

CVS corruption. When providing an inconsistent result, the systemWarning gives a caution that motion

corruption may exist. This can be viewed as an agreement between two independent observers fdisc and
fmani, which resembles the manual assessment mentioned in section 3.1. This warning system may be more
flexible for the practical use rather than directly serving the assessment based on the individual use of fdisc or
fmani.

3.2.3. Impact of scale normalization
Table 2 shows the worst case when scale normalization was not applied. In CNNs, network training was very
unstable, and assessment performance was considerably degraded, especially regarding accuracy, NPV,
sensitivity, and AUC. In VAEs, large-scale variability of CVS data highly affected the loss of accuracy in
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Table 3. Test inference time of ML-based CVS quality assessment methods.

Model LR MLP1 MLP2 VGG16-3 VGG16-4
Time 1.61 µs 8.34 µs 2.32 µs 31.49 µs 33.71 µs
Model VGG16-5 PCA VAE CVAE —
Time 44.48 µs 14.99 µs 15.38 µs 57.61 µs —

manifold projection; therefore, the performance significantly deteriorated in terms of accuracy, NPV,
sensitivity, and AUC. This verifies the impact of scale normalization.

3.2.4. Inference time
In real-time monitoring, assessment should be performed quickly. The input for the proposed method was
updated for every heartbeat in the EIT system. Assuming a subject with a constant 80bpm, the CVS input is
updated every 0.75 s. Roughly, the assessment should be faster than approximately 10−2s. Table 3 shows the
inference time for the test data, calculated by taking the average over the entire test data. After training a
network with the GPU system, we evaluated the inference time by using the CPU system in a laptop
environment (SurfacePro7 equipped with Intel(R) Core(TM) Processors i5-1035G4 and 8GB DDR4 RAM),
which is at a similar level to an EIT monitoring device. The ML models provided a test outcome with
inference time between 1 µs (10−6 s) and 100 µs (10−3 s). This confirms that the proposed method meets the
speed requirements for real-time monitoring.

4. Conclusion and discussion

We developed a novel automated SQI method using two ML techniques, the discriminative model and
manifold learning, to detect abnormal CVS caused by motion-induced artifacts. We discussed how body
movement influences the transconductance data and how the resulting CVS is degraded by movement.
Numerous experiments support the idea that the proposed method can successfully filter motion-induced
unrealistic variations in CVS data.

To the best of our knowledge, this is the first attempt to assess CVS quality to enhance the clinical
capability of an EIT-based cardiopulmonary monitoring system. From a practical point of view, the
proposed method can alert clinicians about CVS corruption to minimize misinformation about patient
safety and facilitate adequate management of patients and medical resources. The proposed method can be
combined with a software system for existing EIT devices.

The proposed method leverages the scale and size normalization before applying the ML techniques. The
scale normalization is based on the subject-specific scaling factor, which is derived from the assumption that
normal CVSs are obtained during initial 20 s of EIT measurement. In practice, we can take advantage of the
existing calibration process that is typically conducted whenever a monitoring device is installed to a specific
subject. In the calibration stage, a subject is asked to temporally be in postural restriction and then the
monitoring device checks and tunes EIT parameters while acquiring normal data. Accordingly, these normal
EIT data are available to compute the scale factor. Occasionally, it is probable to experience unexpected
movements such as seizures during the calibration, which cause to measure erroneous data possibly resulting
in the inappropriate scale normalization. In this case, it is needed to perform the calibration process again for
preventing the ineffectiveness or performance degradation. Meanwhile, once the factor is determined, it is
applied as the simple multiplication (13) and, thus, does not considerably affect on the timeliness of the
proposed method.

There are various approaches to decide the cut-point d with numerous metrics such as accuracy,
Youden’s J statistics, index of union, and so on [35]. In this application, the use of the Youden’s J statistics as a
cut-off-value decision criterion can be a good choice, because the class imbalance is one of the core issues.
The metric J is known to provide a meaningful statistics even for a class imbalanced dataset and has the
strong relationship with the ROC curve [2, 24, 45]. However, it may not be optimal in the practical
perspective that puts the relative emphasis on sensitivity (reducing false negatives) rather than specificity
(reducing false positives). To deal with this, several sensitivity-focused strategies such as weighted J can be
taken into account, but their effectiveness or optimality should be carefully investigated and validated in the
practical environment with the feedback of monitoring device users. This is a subject of our future research.

The use of only healthy subject data in the training process did not fully consider possible influence of the
subject’s illness on CVS. SQI performance might be degraded in patients with illnesses such as arrhythmias,
in which irregular deformation may occur in CVS due to premature ventricular contraction and lead to be
classified as low signal quality. However, when ill patient data are available and appended in the training
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process, a slightly modified SQI can detect the illness and motion by adding another label class. Meanwhile,
arrhythmia can be easily detected using ECG signals.

A further collection of CVS data could be a strategy for enhancing model generalization or stability
toward being equipped with an actual monitoring system. In discriminative models, even with additional
data collection, generalization or stability might not be meaningfully improved because the class imbalance
problem remains or increases. In contrast, the manifold-learning models can accurately infer common
features (i.e. data manifolds) as the total number of normal CVS data grows regardless of class imbalance. In
addition, it can be extended into a semi-supervised or unsupervised learning framework [3, 49], which
reduces the requirement for labeled datasets. Thus, manifold-learning models might be favorable.
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Appendix A. Motion-induced effect on trans-conductance

In the 16 channel EIT system, the voltage data {V j,k
t }j,k in (1) are governed by the following complete

electrode model [47]: At time t, the electric potential distribution (ujt) and electric potential on an electrode
(U j,k

t ) satisfy 

∇· (γt∇u j
t) = 0 in Ω⊂ R3

γt∇u j
t · n= 0 on ∂Ω\

∪16

i
Ek

ˆ
Ek

γt∇u j
t · n= 0 for k ∈ I\{ j, j+ 1}

ujt + zk(γt∇u j
t · n) = U j,k

t on Ekfor k ∈ Iˆ
E j

γt∇u j
t · nds=−

ˆ
E j+1

γt∇u j
t · nds= I

(A.1)

where γt is a conductivity distribution in a human chest Ω at t, n is an unit normal vector outward ∂Ω, ds is a
surface element, and zk is a skin-electrode contact impedance on Ek. The amount of electric current I, which
is injected to the domain Ω, can be scaled and thus assumed to be I= 1.

In the case that the human chest Ω is time-varying owing to motions, Reynolds transport theorem yields
the following approximation [41]:

V̇ j,k
t ≈ V̇ j,k,normal

t + V̇ j,k,motion
t (A.2)

where

V̇ j,k,normal
t =−

ˆ
Ω

γ̇t(r)∇ujt(r) ·∇ukt (r)dr (A.3)

V̇ j,k,motion
t =−

ˆ
∂Ω

vn(r, t)γt(r)∇ujt(r) ·∇ukt (r)ds. (A.4)

Here, vn is an outward-normal directional velocity of ∂Ω and r ∈ Ω is a position vector in Ω. The term

V̇ j,k,normal
t and V̇ j,k,motion

t can be viewed as voltage data acquirable in normal EIT measurement and
motion-induced inference, respectively.
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A similar relation to (A.2) for trans-conductance can be derived as follows: Let us define a
trans-conductance-related value g j,kt by

g j,kt =
I

R(V j,k
t )

. (A.5)

By differentiating g j,kt with respect to t, we obtain

ġ j,kt =
−IR(V̇ j,k

t )(
R(V j,k

t )
)2 ≈

−I
(
R
(
V̇ j,k,normal
t

)
+R

(
V̇ j,k,motion
t

))
(
R(V j,k

t )
)2 . (A.6)

The approximation (A.6) can be expressed as

ġ j,kt ≈ ġ j,k,normal
t + ġ j,k,motion

t (A.7)

where

ġ j,k,normal
t =

−IR
(
V̇ j,k,normal
t

)
(
R(V j,k

t )
)2 and ġ j,k,motion

t =
−IR

(
V̇ j,k,motion
t

)
(R(V j,k

t ))2
. (A.8)

We note that, in the case of vn = 0 in (A.4) (i.e. EIT measurement is not affected by motions), the

relation (A.6) becomes ġ j,kt = ġ j,k,normal
t by the reason of V j,k,motion

t = 0. In the form of trans-conductance
vector, the following approximation holds:

ġt ≈ ġnormal
t + ġmotion

t (A.9)

where

ġnormal
t =

[
ġ1,3,normal
t , . . . , ġ16,14,normal

t

]
and ġmotion

t =
[
ġ1,3,motion
t , . . . , ġ16,14,motion

t

]
. (A.10)

If ġnormal
t satisfies the relation (5), we consequently obtain

ġt ≈ ġairt + ġbloodt + ġmotion
t . (A.11)

Here, we note that ġmotion
t becomes more significant as motion (i.e. |vn| in (A.4)) is large.

Appendix B. Machine learning models

B.1. Discriminative models
B.1.1. Logistic regression (LR)
A LR model fLR consists of linear transformation and sigmoid as follows:

fLR(X) = σ(wTX+ b) (B.1)

where w ∈ R150 and b ∈ R are learnable weight and bias, and σ is a sigmoid function given by
σ(x) = (1+ exp(−x))−1.

B.1.2. Multilayer perceptron (MLP)
AMLP model fMLP has a hierarchical structure with nonlinearity compared to LR. Each layer consists of
linear transformation and nonlinear activation. In our MLP models, ReLU is used in all layers except the last
to avoid gradient vanishing [20]. Table B1 shows the architectures of the MLPs used in this study.

B.1.3. CNN
A CNNmodel fCNN consists of two paths; (1) feature extraction and (2) classification paths. In this study,
the feature extraction path is based on VGG16 [48], as shown in table B1. The resultant feature map is
flattened and then forwarded to the classification path, which is a MLP.

The feature extraction path is a series of two convolutional and maxpooling (or flatten) layers, whose
depth is associated with receptive field (RF) size of a unit in the last convolutional layer [37]. According to
the length of this series, VGG16−3,−4, and−5 are defined, where 3, 4, and 5 represent the iteration number
of the layers in the series. Here, RFs are given by 32, 68, and 140, respectively.
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Table B1. Network architectures; MLP and VGG.

(a) MLP1 (MLP2)

Layer Input Dim Output Dim Activation

Linear 150 (150) 150 (150) ReLU
Linear 150 (150) 300 (150) ReLU
Linear 300 (150) 300 (100) ReLU
Linear 300 (100) 150 (50) ReLU
Linear 150 (50) 150 (25) ReLU
Linear 150 (25) 150 (10) ReLU
Linear 150 (10) 1 (1) Sigmoid

(b) VGG16-5; [1] Feature extraction and [2] Classification networks

Layer Input Dim Output Dim Kernel Activation RF

[1] Conv1D 150× 1 150× 4 3× 4 ReLU 3
Conv1D 150× 4 150× 4 3× 4 ReLU 5
MaxPool1D 150× 4 75× 4 2 ReLU 6
Conv1D 75× 4 75× 8 3× 8 ReLU 10
Conv1D 75× 8 75× 8 3× 8 ReLU 14
MaxPool1D 75× 8 37× 8 2 ReLU 16
Conv1D 37× 8 37× 16 3× 16 ReLU 24
Conv1D 37× 16 37× 16 3× 16 ReLU 32
MaxPool1D 37× 16 18× 16 2 ReLU 36
Conv1D 18× 16 18× 32 3× 32 ReLU 52
Conv1D 18× 32 18× 32 3× 32 ReLU 68
MaxPool1D 18× 32 9× 32 2 ReLU 76
Conv1D 9× 32 9× 64 3× 64 ReLU 108
Conv1D 9× 64 9× 64 3× 64 ReLU 140
Flatten 9× 64 576× 1 — — —

[2] Linear 576× 1 576× 1 — ReLU —
Linear 576× 1 1× 1 — Sigmoid —

B.2. Manifold-learning models
This subsection explains structures of an encoder E and a decoderD in (23), which were used for the
manifold-learning approach described in section 2.3.2. The dimension of the latent vector z was constantly
set as 10 in our experiments.

B.2.1. Principal component analysis (PCA)
PCA learns principal vectors {vi ∈ R150}10i=1 in the following sense: For i = 1, . . . ,10,

vi = argmax
∥v∥=1

‖Xi v‖22and Xi = Xi−1 − vi−1v
T
i−1 (B.2)

where X1 := [X
(1)
pos,X

(2)
pos, . . . ,X

(Npos)
pos ]T. For ease of explanation, X1 is assumed to be zero-mean. An

encoder Epca and a decoderDpca are given by

Epca(X) = z :=
[
〈X,v1〉, . . . ,〈X,v10〉

]
andDpca(z) =

10∑
j=1

zi vi (B.3)

where zi is ith component of z.

B.2.2. Variational auto-encoder (VAE)
Table B2 shows encoder-decoder models for VAE, whose network architecture is based on either MLP or
CNN. In VAE, z is given by the following sampling procedure: z= µ+σ� znoise and znoise ∼N (0, I),
where µ and σ are substantial outputs generated by a neural network,� is the element-wise product, and
N (0, I) is the normal distribution of mean 0 and covariance I. Here, 0 is the zero vector and I is the identity
matrix of 10× 10.
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Table B2. VAE network architectures.

(a) VAE

Encoder

Layer Input Dim Output Dim Activation

Linear 150 125 ReLU
Linear 125 75 ReLU
Linear 75 50 ReLU
Linear 50 10× 2 —
Sampling 10× 2 10 —

Decoder

Linear 10 50 ReLU
Linear 50 75 ReLU
Linear 75 125 ReLU
Linear 125 150 -

(b) Convolutional VAE

Encoder

Layer Input Dim Output Dim Kernel Activation

Conv1D 150× 1 75× 8 3× 8 ReLU
Conv1D 75× 8 38× 16 3× 16 ReLU
Conv1D 38× 16 19× 24 3× 24 ReLU
Conv1D 19× 24 10× 32 3× 32 ReLU
Flattening 10× 32 320× 1 — —
Linear 320× 1 10× 2 — —
Sampling 10× 2 10× 1 — —

Decoder

Linear 10× 1 320× 1 — —
Reshaping 320× 1 10× 32 — —
DeConv1D 10× 32 19× 24 3× 24 ReLU
DeConv1D 19× 24 38× 16 3× 16 ReLU
DeConv1D 38× 16 75× 8 3× 8 ReLU
DeConv1D 75× 8 150× 8 3× 8 ReLU
Conv1D 150× 8 150× 1 1× 1 ReLU
Linear 150× 1 150× 1 —

For VAE training, the following term is added to the loss function (23):

KL(N (µ,Σ)‖N (0, I)) =
1

2

10∑
i=1

(µ2
i +σ2

i − logσi − 1) (B.4)

where KL is Kullback-Leibler divergence andΣ is a 10× 10 diagonal matrix whose (i, i) entry is σi. This term
enables VAE to learn dense and smooth latent space embedding in or nearN (0, I) [31, 50, 58].

B.2.3. β-Variational Auto-encoder (β-VAE)
β-VAE differs with VAE in terms of loss function while sharing a model architecture. For some β ∈ R,
β×KL is added to the loss (23) instead of (B.4) (i.e. VAE is the case of β= 1). This simple weighting is
known to be advantageous on disentangled representation learning of underlying factors [25]. We
determined an optimal β as the empirical best. Table B3 showed SQI performance variation about β in the
dataset where the scale and size normalization using linear interpolation were applied.

B.2.4. Determination of cut-off-value d
Figures B1(a) and (b) show a case of selecting the cut-off-value d in (25). Figure B1(a) shows a ROC curve
obtained by varying d from 0 to∞. Figure B1(b) shows computed values of J with respect to values of d. We
selected a cut-point dcut such that maximizing J. In our experiments, the dcut value was 0.3412 for PCA,
0.1855 for VAE, 0.1814 for β-VAE, 0.1830 for CVAE, and 0.1678 for β-CVAE in the case with scale and linear
interpolation-based size normalization.
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Table B3. β-VAE performance comparison about varying β.

β-VAE β-CVAE

β = 1
3 β = 1

2 β = 1 β = 2 β = 3 β = 1
3 β = 1

2 β = 1 β = 2 β = 3

Test Accuracy 0.9060 0.9092 0.9066 0.8951 0.9221 0.9208 0.9298 0.9292 0.9195 0.9189
PPV 0.9694 0.9680 0.9687 0.9682 0.9672 0.9750 0.9739 0.9688 0.9663 0.9663
NPV 0.6151 0.6282 0.6181 0.5802 0.6900 0.6617 0.7011 0.7100 0.6720 0.6693
Sensitivity 0.9203 0.9255 0.9218 0.9084 0.9441 0.9322 0.9441 0.9486 0.9397 0.9389
Specificity 0.8142 0.8047 0.8095 0.8095 0.7952 0.8476 0.8380 0.8047 0.7904 0.7904
AUC 0.9503 0.9439 0.9513 0.9426 0.9489 0.9531 0.9603 0.9528 0.9528 0.9471

Figure B1. Determination of cut-off-value d in (25) to develop a signal quality assessment map using a trained manifold-learning
model.

B.3. Hyper-parameters
This subsection describes in detail hyper-parameters used for network training. For the sake of simplicity, we
report the parameters for learning a SQI map with scale and size normalization using linear interpolation.
For the discriminative models, the MLPs were trained for 500 epochs with a learning rate of 10−4. By
comparing validation results, we selected the models from the 480th and 440th epochs for MLP1 and MLP2,
respectively. The VGG models were trained for 300 epochs with a learning rate of 10−4. The models from the
280th, 280th, and 160th epochs were chosen for VGG16-3, VGG16-4, and VGG16-5, respectively. For the
manifold learning models, VAE and β-VAE were trained for 10 000 epochs with a learning rate of 10−5, while
CVAE and β-CVAE were trained for 500 epochs with a learning rate of 10−4. We chose the models from the
9000th, 8000th, 450th, and 400th epochs, respectively.
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