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ABSTRACT 
 

Background: In sub-Saharan Africa, where there are inadequate diagnostic and reporting facilities, 
limited data availability hinders the accurate estimation of key parameters in mathematical models 
of multi-drug-resistant tuberculosis. Furthermore, gaps in knowledge about multi-drug-resistant 
tuberculosis (MDR-TB) dynamics add another layer of complexity to these modeling efforts.  
Methods: We analyzed databases such as google scholar, PubMed, scopus, Web of Science etc, 
using relevant keywords to identify relevant articles on challenges for mathematical modeling of 
multi-drug-resistant tuberculosis in sub–Saharan Africa covering the period from 2010 to the 
present. 
Results: This review highlights the epidemiology of multidrug resistant tuberculosis in sub–Saharan 
Africa and the limitations in mathematical modeling of multi-drug-resistant tuberculosis (MDR-TB) in 
the region.  
Conclusion: Accurate diagnosis and reliable data are crucial barriers to effective modeling. The 
review also underscores the potential of machine learning techniques to improve data quality and 
address issues related to incomplete data, suggesting that these methods could become essential 
components of future mathematical models. 
 

 
Keywords: Mathematical modeling; tuberculosis; multidrug-resistant tuberculosis; sub-Saharan Africa. 
 

1. INTRODUCTION  
 

1.1 Background on Tuberculosis (TB) 
  
Tuberculosis (TB) emerged as the first infectious 
disease to be identified as a threat to global 
health by the World Health Organization (WHO) 
in 1993 [1]. Mycobacterium tuberculosis is the 
bacterium responsible for tuberculosis [2]. Prior 
to the emergence of coronavirus disease 
(COVID-19), tuberculosis was the leading cause 
of mortality across the globe. According to a 
recent report, TB remains one among the top ten 
causes of mortality worldwide [3]. In 2022, TB 
claimed about 1.3 million lives, including 167,000 
individuals living with human immunodeficiency 
virus (HIV). Globally, Africa accounts for only 
15% of the world's population, yet it bears a high 
burden of TB. For each 100 new TB cases and 
100 TB-related deaths recorded across the 
globe, Africa accounts for 23% and 31%, 
respectively [4]. Also, the rise in TB cases is 
associated with poverty, decline in healthcare 
infrastructure, and accessibility, and a high 
prevalence of HIV infection [5]. 
 

1.2 Mathematical Modeling in Epidemio-
logy 

 
The dynamics of tuberculosis involve complex 
interactions between the human host and 
Mycobacterium tuberculosis, exacerbated by 
factors such as the HIV epidemic, drug-resistant 
TB, and unhealthy lifestyles, such as malnutrition 
and smoking [6]. Mathematical models are used 
in epidemiology to understand such interactions 

between the host organism and disease-causing 
agents. They can help identify the parameters 
that have the most influence and are most 
controllable, as well as help narrow                         
thoughts on the crucial mechanisms that                   
shape the epidemiology of an infectious disease 
[7]. 
 
The general approach to modeling requires 
translation of epidemiological scenarios into a 
mathematical problem. Based on the scientist’s 
knowledge of the system, the modeling approach 
usually starts with a detailed description of the 
processes. A precise epidemiological question 
guides the translation into mathematical 
equations. Only those features that are pertinent 
to the epidemiological inquiry in mind are 
included in the model. Once developed, the 
model is then examined to either estimate 
parameters, yield crucial quantities that control 
the general behavior of the solutions, fit to 
existing data, or determine the relative 
importance of each parameter to the solution by 
means of simulation. The findings are then 
translated back and evaluated in the                        
context of the epidemiological situation and 
perhaps look for the solution to the initial inquiry 
[8]. 
 

2. OBJECTIVES OF REVIEW  
 
This review identifies the key factors that hinder 
the mathematical modeling of multidrug-resistant 
tuberculosis (MDR-TB) in Sub-Saharan Africa 
and examines potential strategies to address 
these challenges. 
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3. METHODS 
 
A minireview was conducted to analyze relevant 
publications on mathematical modeling of MDR-
TB in Sub-Saharan Africa by searching electronic 
databases (like Scopus, Google Scholar, etc.), 
covering the period from 2008 to the present, 
using the following keywords: ‘tuberculosis,’ 
‘mathematical modeling,’ ‘multi-drug resistance,’ 
‘Africa,’ and ‘sub-Saharan Africa.’ 
 

4. DISCUSSION  
 

4.1 The Present State of Epidemiological 
Evidence of Multidrug-Resistant 
Tuberculosis in Sub-Saharan Africa 

 

MDR-TB occurs when a TB bacterium develops 
resistance to at least two of the most potent first-
line antibiotics utilized to treat TB, which are 
rifampin and isoniazid. It is a major hindrance to 
TB control efforts [9,10]. This is a more difficult 
and costly tuberculosis to treat compared to 
drug-susceptible TB [11]. There were 186,772 
reported instances of multidrug-resistant 
tuberculosis, with 156,071 patients under 
medical care globally [11]. The region of sub-
Saharan Africa remains at the forefront in 
combating this global ailment, bearing an 
enormous share of multi-drug-resistant 
tuberculosis [12,13]. There are 30 countries with 
high MDR-TB prevalence, 8 of these countries 

are found in Sub-Saharan Africa and are 
conisdered high burden countries for MDR-TB, 
as presented in Fig. 1. 
 
In recent times, there are specific changes in 
incident cases in Sub-Saharan Africa countries 
that are worth pinpointing. Fig. 2 shows the 
estimated number of incident cases of multidrug-
resistant/rifampicin-resistant TB in Sub-Saharan 
Africa from 2015 to 2021. The figure depicts the 
challenges over 7 years (2015-2021) in the eight 
most affected countries in Sub-Saharan African, 
and this demonstrates the variability of 
incidences of multidrug-resistant TB in the future 
and the requirement of strong strategies on the 
country [14]. There are eight out of the 30 
worried countries with high multidrug-
resistant/rifampicin-resistant TB, and six of the 
countries, namely Mozambique, Congo-DRC, 
South Africa, Nigeria, Zambia, and Zimbabwe 
are reported to have a high incidence of 
HIV/AIDS and multidrug-resistant TB in Sub-
Saharan Africa [15,16]. Thus, in terms of the 
number of co-infections involving multidrug-
resistant TB and HIV, sub-Saharan Africa is 
leading globally. However, the above studies 
have revealed that the sub-Saharan African 
region is poorly reporting the problems of 
multidrug-resistant TB, and it is estimated that 
data comes from 50% of the nations, and 
majority of these data are from Southern and 
East Africa [17,18]. 

 

 
 

Fig. 1. Highly worried countries with Multidrug-Resistant TB in Sub-Saharan African in 2022 
(WHO, 2022 report) 
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Fig. 2. The estimated number of incident cases of multidrug-resistant/rifampicin-resistant TB 
of Country-specific trends from 2015-2021 (WHO, Report 2022) 

 
4.2 Diagnostic Challenges and Treatment 
 
The main reason for the rising multidrug-
resistant TB prevalence in Sub-Saharan Africa, 
is evidently treatment defaulting [19]. As a 
result, there is a problem of timely diagnoses 
and delayed commencement of the necessary 
treatment. Current data suggest that there’s a 
substantial gap when it comes to diagnosing 
tests and the general application of the tools 
[17]. Regarding treatment, the picture is quite 
worrisome as it concerns the ability to catch up 
with the goals set by the World Health 
Organization End TB Strategy. Although the 
introduction of brief program regimens is a 
positive progress, the treatment rate for 
multidrug-resistant TB in Africa remains at only 
59%, suggesting that more improvements are 
needed to enhance treatment outcomes [20]. 
 

4.3 Mathematical Models in TB Research 
  
The fundamental idea about disease 
transmission models is the description of 
temporal progression of the outbreak in 

mathematical terms [7]. To capture dynamics of 
infectious diseases, a biological knowledge of 
the pathogen and a statistical description of the 
available data are needed in addition to 
mathematical frameworks [21].  
 
Mathematical models are an approximate 
quantitative description of some actual or 
hypothetical real-world scenario expressed in 
mathematical language [22]. The most widely 
used mathematical epidemiological model is the 
SIR model [23], which divides a population into 
either “susceptible,” “infected” or “recovered and 
immune.” Susceptible individuals (S) can 
contract the disease. Infectious individuals (I) 
can transmit to vulnerable populations. 
Recovered individuals (R) are those who have 
been infected and recovered from the 
disease. An increase in the infected population 
decreases the susceptible population [24]. 
 
SIR is a predetermined model based on a set of 
differential equations that can be used to 
simulate the dynamics of different states of 
individuals in a population [7]. The simplest 
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version of SIR models are designed to not 
consider some demographic factors - for 
example, no death, no birth, no migration, and no 
re-infection can be assumed [23]. Different 
versions incorporate different factors. 
 
Compartment models can be used to divide a 
population into subpopulations based on 
tuberculosis status where susceptible persons 
who are exposed to tuberculosis are at risk of 
becoming infected [24]. 
 

4.4 Modeling Multidrug Resistant-
Tuberculosis in sub-Saharan Africa 

 
Several mathematical models have been created 
to investigate the dynamics of multi-drug-
resistant tuberculosis (MDR-TB) in sub-Saharan 
African countries, and to predict future trends. 
 
Dowdy et al. [25] designed a compartmental 
difference-equation model to analyze the TB/HIV 
epidemic among adults in South Africa by fitting it 
to epidemiological data from World Health 
Organization. The TB model population was 
divided into compartments based on the disease 
status (susceptible, latent infection, diseased, or 
cured), TB drug susceptibility (nonresistant, 
MDR, or XDR), TB infectivity (less or highly 
infectious), and HIV status (positive or negative). 
They estimated that culturing and performing 
DST in 85% of previously treated cases and 37% 
of new cases could prevent 46.6% of MDR-TB 
deaths and avert 7,721 MDR-TB cases in South 
Africa over a decade. 
 
Salvatore et al. [9] developed a deterministic 
compartmental model of adult TB transmission in 
South Africa, projecting that MDR-TB incidence 

will account for 5% of total incident TB by 2040 
under the assumption of consistently lower 
efficiency of MDR-TB transmission compared to 
drug-susceptible TB. They however emphasize 
the limited understanding of actual trends in 
MDR-TB transmission efficiency and the 
uncertainty surrounding future MDR-TB 
epidemics in the country [9]. 
 
Mengistu and Witbooi [26] developed a 
compartmental model to identify MDR-TB 
transmission dynamics in Ethiopia, aiming to 
determine the most effective strategies for 
tackling MDR-TB in the region. Their findings 
indicate that the treatment of drug-susceptible 
tuberculosis is the most effective                           
method for halting MDR-TB transmission in 
Ethiopia. 
 
In the mathematical modeling analysis conducted 
by Menzies et al. [27], a correlation was identified 
between the high estimates of rifampicin-
resistant tuberculosis (RR-TB) burden and the 
simultaneous prevalence of TB and HIV in 
Southern African countries. The association 
between RR-TB with HIV is particularly 
pronounced, of which HIV-infected patients are 
estimated to experience 40 times more disability-
adjusted life years from RR-TB compared to HIV-
uninfected individuals. This is due to the 
accelerated progression of TB among people 
living with HIV. The significant overlap between 
TB and HIV epidemics is aggravated by low-
income status and poor healthcare facilities, 
which hinder positive treatment outcomes for 
patients coinfected with RR-TB and HIV [27]. 
 
Wotale et al. [28] modeled the time until death for 
patients with multidrug-resistant tuberculosis 

 

 
 

Fig. 3. A basic tuberculosis transmission model 
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at Saint Peter’s Specialized Hospital in Ethiopia 
using parametric shared frailty models. 
 

4.5 Challenges in Mathematical Modeling 
of Multidrug Resistant-Tuberculosis  

 
However, gaps remain in the understanding of 
the MDR-TB dynamics in sub-Saharan Africa 
using mathematical models. One of the 
challenges faced is the limited amount of quality 
data. This is caused by poor diagnostic and 
reporting facilities in this region. Thus, it can be 
hard to estimate the parameters of those 
mathematical models. Trying to incorporate this 
uncertainty into the models often results in 
complexity [21], coupled with the fact that 
parameter selection is a meticulous task. For 
example, the No Deficit model developed by 
Salvatore et al [9] was inadequately supported by 
empirical data in South Africa leading to 
nonuniformity in projection when compared to 
reports from previous reports. 
 

Also, the knowledge gap in the dynamics of 
MDR-TB imposes another challenge in 
mathematical modeling [29,9]. For instance, the 
mechanisms of reactivation and mixed strain are 
not completely understood. As a result, the 
complexities of mixed infection are often omitted 
in mathematical modeling of MDR TB [29]. Such 
omissions can affect the predictive accuracy of 
mathematical models. A better understanding of 
these dynamics of multi-drug resistant TB in sub-
Saharan Africa will enhance the efficiency of 
mathematical models in making predictions [9]. 
 

Prioritizing targeted investments in MDR-TB 
interventions should be emphasized, such as 
expanding the availability and accessibility of 
drug susceptibility testing (DST), enhancing case 
finding efforts, improving MDR-TB treatment 
regimens, and securing dedicated political and 
economic support, given the potential for 
significant future spread of MDR-TB [9]. 
 

4.6 Future Directions in Multidrug 
Resistant-Tuberculosis Modeling 

 

In sub-Saharan Africa, a region characterized by 
limited amounts of quality data on MDR-TB, and 
gaps in documentation of MDR-TB cases, 
machine learning techniques can help improve 
data quality and make up for incomplete data 
thus increasing prediction accuracy of 
mathematical models. Such an integration of 
machine learning (ML) predictions or parameters 
into mathematical models to simulate the future 
spread and effects of MDR-TB in Sub-Saharan 

Africa will be of great impact. The development 
of efficient mathematical models of MDR-TB can 
also help provide information about the efficiency 
of drugs and vaccines [30]. This can have a great 
impact on the development and optimal 
distribution of new medication and vaccines of 
tuberculosis in sub-Saharan Africa. However, 
there is much need for proper MDR-TB 
surveillance and testing systems in Sub-Saharan 
Africa [31] since the true burden of drug-resistant 
TB is largely missed in Africa with only 30% 
diagnosed [17]. 
 

5. CONCLUSION  
 

This review emphasizes the need for precise 
diagnostics, reliable data, and sophisticated 
modeling techniques to tackle MDR-TB 
effectively in sub-Saharan Africa. The results 
reveal that the primary challenges in developing 
robust mathematical models for MDR-TB in this 
region are the limited and poor-quality data and 
significant knowledge gaps. 
 
To overcome these challenges, it is 
recommended that sub-Saharan Africa establish 
robust MDR-TB surveillance systems. Enhanced 
data quality will drive more MDR-TB research, 
bridging existing gaps in knowledge and data. 
Existing literature suggests that targeted 
strategies, such as improved diagnostic testing 
and tailored treatments, can significantly 
decrease MDR-TB prevalence and mortality in 
the region. 

 
Furthermore, addressing incomplete data and 
boosting model accuracy through machine 
learning techniques to predict missing 
information could greatly improve model 
effectiveness. It is also crucial to integrate the 
efforts of modelers with clinicians and 
policymakers to develop and implement 
comprehensive strategies to combat MDR-TB in 
sub-Saharan Africa. 
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