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ABSTRACT 
 

The MarkSim climate data generator is designed to have global validity in scales of up to five 
degrees. Thus, the objective of this study was to evaluate the performance of the MarkSim-
HadGEM2-ES and MarkSim-MIROC5 models to estimate average rainfall in the last agricultural 
frontier of the savannah in the north and north-east regions of Brazil. For this purpose, the 
simulated data were compared with those observed and recorded by the National Institute of 
Meteorology, being evaluated by statistical measures of correlation, bias and performance. The 
results revealed high bias and relative error, with unsatisfactory performance in the micro regional 
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and regional scales. Calibration by means of regression improved performance and showed that in 
order to reproduce the current climate and make reliable projections in these spatial scales 
possible, there is a need to correct the systemic errors of these models. 
 

 

Keywords: Validation; climate; modeling; savannah; rainfall. 
 

1. INTRODUCTION 
 

Over the past few decades, a large number of 
high-quality studies have been compiled to attest 
that climate change is unequivocal and can result 
in high-intensity social impacts in various areas 
such as energy, health and agriculture, for 
example. In this sense, perhaps the greatest 
consequence of the increase in regional and 
global temperatures is the alteration of the water 
cycle in several regions of the planet, increasing 
the frequency and intensity of extreme events 
such as floods and prolonged droughts [1-3]. 
 

The fifth phase of the Coupled Model 
Intercomparison Project (CMIP) coordinated 
experiments developed by several institutions for 
the development of Global Climate Models 
(GCM). In general, the GCMs have systematic 
errors and their spatial scales (e.g. 100 km per 
grid) are not adequate to project the behaviour of 
the local climate. As such, the use of GCMs 
without proper correction of their errors in 
regional studies and in the river basin scale is not 
recommended. It is, therefore, recommended the 
use of methods that correct these errors (i.e. 
downscaling, bias correction) [2,4]. 
 

Downscaling is characterized by the application 
of statistical or dynamic methods to increase the 
spatial resolution of the climate data set 
produced by a GCM [5-7]. The Model Output 
Statistics (MOS) is one of the statistical methods 
used to establish relations between data 
simulated by GCMs and those observed in local 
meteorological stations. For example, rainfall 
simulated by GCMs is not credible and 
represents averages in terms of grid area rather 
than local values but may contain information on 
actual rainfall. Thus, the local predictors can be 
calibrated from the regression between the 
observations and the predictors of a GCM so that 
this model can then be applied to future 
projections [8]. 
 

According to Silva [4], the 3rd order Markov 
generator, known as MarkSim, has shown good 
results in performing temporal and spatial 
downscaling in resolutions of up to 0.5°. 
Although it was not designed for this purpose, 
several studies [9-13] used it satisfactorily to 
estimate precipitation and temperatures aimed at 

evaluating the potential impacts of climate 
change on agricultural systems through the 
simulation of future scenarios. 
 

Ongoing climate change is expected to increase 
the inter-annual variability of rainfall in many 
locations and to raise average annual 
temperatures at the global level in the near 
future. This phenomenon can have several 
impacts on plantations and livestock, such as 
lack or excess of water, outbreaks of pests and 
diseases, flooding of productive lands, forest 
fires, among others that threaten the health and 
well-being of populations [14-17]. 
 

The climate in the Brazilian savannah is 
particularly vulnerable to changes in land use 
and cover, since the water and temperature cycle 
is strongly influenced by the characteristics of 
vegetation [17-20,21]. Therefore, knowing and 
projecting the rainfall characteristics of this biome 
in the northern and north-eastern regions of 
Brazil becomes fundamental, because, in 
addition to the socio-economic implications, this 
information can serve as a subsidy for planning 
and formulation of public policies aimed at 
sustainable regional development [22,23]. 
 

In this context, the objective of this study was to 
assess the performance of rainfall simulations 
generated in the climate models MarkSim-
HadGEM2-ES and MarkSim-MIROC5, based on 
data observed in conventional meteorological 
stations of the National Meteorological Institute 
(INMET) located in the micro-regions that make 
up the last agricultural frontier of the Brazilian 
savannah in the north and north-east regions. 
 

2. MATERIALS AND METHODS 
 

The study area is an important agricultural 
frontier in Brazil. The region comprises the 
Cerrado portions of the states of Maranhão, 
Tocantins, Piauí and Bahia. The region is 
composed of 337 municipalities distributed in an 
area of 73,848,967 hectares in 31 micro-regions 
(Fig. 1) and combine good geographical 
conditions for the cultivation of grains with 
relatively cheap land. It is also home to the last 
remaining undeveloped stretch of the Cerrado, 
thus creating tensions between production and 
environmental protection [2,24]. 



Fig. 1. Geographic location of the study 
 
The savannah formations are predominantly 
(63.6%) in the study area, but there are transition 
formations with different types of natural 
landscapes (25.7%) at the edge of the Amazon 
and Caatinga, to the west and east, respectively 
[25,26]. The relief is characterized by large areas 
of slopes (39%) and depressions (56%), with 
altitudes ranging from 1 to 1200 m above sea 
level. In the central extension, the semi
tropical climate is dominant and corres
about 78% of the territory, being characterized by 
periods of seven to eight months of scarce 
precipitation and average air temperature above 
18°C in all the months of the year. On the 
eastern border, the semi-arid climate is 
characterised by the absence of rainfall for six 
months and high temperatures all year round. 
Four large hydrographic regions are contained 
within these limits, they are: Tocantins
Atlantic-North/Northeast stretch, Parnaíba and 
São Francisco [25,26]. 
 
The monthly precipitation was extracted from 
the records of the stations of the National 
Institute of Meteorology – INMET, available on 
the institution's website 
(http://www.inmet.gov.br/portal/). Historical 
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Fig. 1. Geographic location of the study area and its micro-regions [24

The savannah formations are predominantly 
(63.6%) in the study area, but there are transition 
formations with different types of natural 
landscapes (25.7%) at the edge of the Amazon 

west and east, respectively 
]. The relief is characterized by large areas 

of slopes (39%) and depressions (56%), with 
altitudes ranging from 1 to 1200 m above sea 
level. In the central extension, the semi-humid 
tropical climate is dominant and corresponds to 
about 78% of the territory, being characterized by 
periods of seven to eight months of scarce 
precipitation and average air temperature above 
18°C in all the months of the year. On the 

arid climate is 
absence of rainfall for six 

months and high temperatures all year round. 
Four large hydrographic regions are contained 
within these limits, they are: Tocantins-Araguaia, 

Parnaíba and 

extracted from    
the records of the stations of the National 

INMET, available on 
the institution's website 
(http://www.inmet.gov.br/portal/). Historical 

records of observations made in 27 
meteorological stations in the last ten years were 
used, referring to the period from January
to December 2018. These records
associated with each micro-region 
according to information from the Municipal 
Agricultural Survey of the Brazilian Institute of 
Geography and Statistics [27], has experienced 
an agricultural area growth of over 40% since
2009. 
 
The daily climate data simulation was generated 
in the MarkSim-GCM, whose detailed description 
can be found in the studies of Jones and 
Thornton [28-31]. The MarkSim 
validated and calibrated from 10,000 weather 
stations worldwide with over 10 years of 
continuous data, grouped into 702 clusters of 
precipitation and temperature climates on a 
monthly scale. The MarkSim has been used 
efficiently as a temporal and spatial downscaling, 
with resolutions up to 50 km 
(http://gisweb.ciat.cgiar.org/MarkSimGCM/
 
Therefore, temporal and special downscaling 
was used on the coordinates of the INMET 
stations, with a resolution of approximately 20 
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km, from the HadGEM2-ES (Hadley Centre 
Global Environmental Model 2 – Earth System) 
models with resolution data of 1,241°x1,875° [32] 
and MIROC5 (Model for Interdisciplinary 
Research on Climate 5) produced by the Climate 
System Research Center of the University of 
Tokyo, with resolution data of 1,406°×1,406° 
[33]. Thus, data on precipitation, solar radiation 
and maximum and minimum temperatures were 
generated for the period from January 2009 to 
December 2018. 

 
It should be noted that MarkSim generates 
climatic data as of January 2010. As there was a 
need to obtain 2009 simulations, these were 
generated by regression, considering the data 
observed as a predictor variable of the 
simulations. 

 
Descriptive statistics tools (mean, coefficient of 
variation, Student's t test and Pearson's 
correlation coefficient) were used in the 
Paleontological Statistics Software Package for 
Education and Data Analysis – PAST and used 
to analyse the results, adopting a significance 
level of 95% to test the possible inter-annual 
differences and relationships between the 
variables obtained and simulated. 

 
To assess the accuracy of climate models, the 
percentage of bias (Pbias) and mean absolute 
error (MAE) was used together with Willmott's 
agreement index [34]. On the other hand, the 
adapted performance index (C') of the models 
was evaluated by the product of Pearson's 
correlation coefficient (r) and Willmott's             
index (d), as proposed by Camargo and 
Sentelhas [35]. 

 
The calibration of the models was performed 
through linear regression, where the predictive 
variable was the simulation generated. To test 
the independence of the residuals from the 
regression equation, the statistic of Durbin-
Watson (D) was used [36]. 

 
The zero value for Pbias (Eq. 1) indicates the 
absence of bias, while different values indicate 
overestimation, when negative, and 
underestimation, when positive [37]. Considering 
that the observed data present a small margin of 
error, Pbias between ±0.5% were considered 
null. 
 

PBias = 100(∑ ���� − ����/ ∑ ����)             (1) 
 

Where: Esti – Estimated value of the variable for 
point i, Obsi – Observed value of the variable for 
point i. 
 

The MAE measures the magnitude of the 
weighted average of absolute errors. For Willmott 
and Matsuura [38], the MAE is a natural and 
more accurate measure of the mean magnitude 
of the error as can be seen in Eq. 2. 

 

MAE = 
�

�
 ∑ |�� − ��|�

���                                 (2) 

 

Where: Ei – Estimated value of the variable for 
point i, Oi – Observed value of the variable for 
the point i, n – Sample size. 
 
The mean absolute percentage error (MAPE) is a 
precision statistic that prevents the error from 
being decreased by the sum of values with 
opposite signs (Eq.3) and can be classified 
according to Table 1 [39]. 
 

MAPE = 
���

�
 ∑ �

(���������)

����
��

���                        (3) 

 

Where: Esti – Estimated value of the variable for 
point i, Obsi – Observed value of the variable for 
point i, n – Sample size. 
 

Willmott's index reveals the degree of agreement 
between observed and simulated measurements, 
ranging from 0 to 1, where the first value 
represents the total disagreement and the 
second the perfect agreement. Thus, the higher 
the result of Eq.4, the better the performance of 
the model. 
 

d = 1 −   
∑ (���������)²�

���

∑ (|���������|�|���������|)²�
���

              (4) 

 

Where: Esti – Estimated value of the variable for 
point i, Obsi – Observed value of the variable for 
the point i, AObs – Average value of the 
observed variable n – Sample size. 
 

The performance index - C' (Eq. 5), proposed by 
Camargo and Sentelhas [35], combines 
measures of precision and accuracy. In this 
sense, the precision measure was given by the 
well-known Pearson's linear correlation 
coefficient (R), which measures the degree of 
dispersion and direction of the dynamics of one 
variable in relation to another. The accuracy was  
represented by the Willmott’s index, since it 
measures the degree of compliance between the 
estimated and observed data. 
 

C’ = � x R                                                    (5) 
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Table 1. Proposed classification for performance indicators 
 

Pbias¹ (C’)² MAPE³ Classification 
<10% > 0,75 < 10% Very Good 
10% - 14% 0,75 -0,64 10% - 19% Good 
15% - 24% 0,65 - 0,60 20% - 29% Satisfactory 
≥25% < 0,60 ≥30% Unsatisfactory 

¹[37], ²[35], ³[39] 
 

Table 1 presents a summarized and harmonized 
classification of the evaluation proposals by Van 
Liew et al. [37], Lewis [39] and Camargo and 
Sentelhas [35] for the percentage of bias, mean 
absolute percentage error and performance 
index, respectively. 
 

3. RESULTS AND DISCUSSION 
 

The behaviour of mean rainfall observed monthly 
in the region and those simulated by the 
MarkSim-HadGEM2-ES and MarkSim-MIROC5 
models is shown in Fig. 2. It can be seen that the 
simulations convincingly reflect the seasonality of 
the region [23,40]. In this sense, the simulations 
of the dry months (May to October) were 
characterized by a high level of reliability. 
However, both models were marked by strong 
biases of overestimation during the rainy months 
(October to April). 
 

It was found that the MarkSim-HadGEM2-ES and 
MarkSim-MIROC5 models reproduce the same 
pattern of error, with small differences, with the 
rainy season being well reproduced only at the 
end of 2017 and beginning of 2018. The 
MarkSim simulator was designed to dispense the 
need for local calibration, having global validity 
[31]. However, the results presented in Fig. 2 
reveal the need to calibrate the model for the 
region that configures the territorial delimitation 
of this study. 
 

The rainy months correspond to the period of 
planting and development of crops, where the 
soil of large areas is covered and there is an 
accentuated humidity in the air due to the large 
vegetation coverage and consequently, 
abundant evapotranspiration [18,23,40-42]. 
 

MarkSim's pronounced tendency to overestimate 
rainfall in the rainy months of the region by 
running HadGEM2-ES and MIROC5 GCMs ends 
up being reflected in the monthly average 
projection. Accordingly, the descriptive statistics 
(Table 2) of the simulated and observed data 
reveal that the models simulate measures of 
central tendency and inter-annual variability very 
similar to each other, but higher than those 
observed, so that significant differences between 

the variables were detected at the minimum level 
of p≤0,05 in the student's t test, in this time scale. 
 
The average annual volume precipitated in the 
region reaches 1,508 mm, monthly average of 
126 mm (between 1950 and 1990). The rainy 
season occurs between October and May, with a 
monthly average of 163 mm, varying between 79 
mm in May and 256 mm in March. The dry period 
occurs between June and September, a monthly 
average of 20 mm [43]. The annual and monthly 
averages observed in the period of this study 
were lower than those recorded between 1950 
and 1990. 
 
There is also a high intra- and inter-annual 
variability of rainfall in this region, which, 
according to Strassburg et al. [17], represents an 
indication of greater vulnerability to 
environmental changes, since the functioning of 
almost all ecosystem services is adapted to the 
patterns of spatial and temporal distribution of 
rainfall, as well as to the amplitude of its 
intensity. 
 
The spatial bias of the models, in relation to the 
monthly average rainfall, on the scale of 
homogeneous micro-regions that presented 
agricultural expansion in the last ten years, can 
be observed in Fig. 3. Therefore, it was possible 
to verify that the models provided overestimated 
data for most, but not all, micro-regions. In some 
micro-regions there is underestimation of rainfall 
and in others the simulations precisely reproduce 
the intra-annual rainfall regime. 
 
A simple comparison between the models 
showed the superiority of the MarkSim-
HadGEM2-ES, since it did not show bias in eight 
micro-regions (Fig. 3B) while MarkSim-MIROC5 
was successful in only five (Fig. 3A). Other five 
micro-regions had their rainfall underestimated in 
both models, being two central ones where 
savannahs predominate and three in the eastern 
border, in the transition from the Cerrado to the 
Semi-arid. It is also noted that the absence of 
bias (Pbias < 10%) is concentrated in the 
transitional micro-regions between the Cerrado 
and Amazon biomes [44]. 
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Fig. 2. Monthly averages of observed (O RAIN) and simulated rainfall by the MarkSim-
HadGEM2-ES (H RAIN) and MarkSim-MIROC5 (M RAIN) models 

 

Table 2. Descriptive statistics of the studied period 
 

Indicators MIROC5 HadGEM2 Observed 
Monthly  
Average (mm)* 131,8a 122,1a 95,5b 
SD (mm) 115,3 123,8 69,1 
CV (%) 94,4 93,9 72,4 
Annual  
Average (mm)* 1593,4a 1461,5a 1198,7b 
SD (mm) 20,2 12,4 166 
CV (%) 0,01 0,01 13,8 

* Distinct letters represent significant differences (p ≤ 0,05) 
 

The values of the statistical indicators obtained 
for each model are shown in Table 3 and reveal 
that, on a regional scale, they are similar in 
relation to precision (d), determination (r²) and 
the percentage of average error (MAPE). Only 
the last one is classified as unsatisfactory. 
However, they present significant differences in 
relation to the bias (Pbias), both being classified 
as unsatisfactory for this indicator [37]. The 
performance indicator was considered 
satisfactory [35]. Both models overestimate 
precipitation in most micro-regions, although they 
are considered good by Willmott's classification 

[34]. Thus, MarkSim-MIROC5 presents lower 
bias and confirms the findings of Sales et al. [45]. 
However, Torres [46] also found many 
uncertainties in the validation of climate models, 
even with dynamic downscaling techniques.  
 

Table 4 shows that the percentage of bias was 
"unsatisfactory" in 13 micro-regions for each 
model used (MarkSim-HadGEM2-ES and 
MarkSim-MIROC5). However, it was found that 
in 15 micro-regions of Agricultural expansion, the 
bias of MarkSim-HadGEM2-ES is greater than 
that of MarkSim-MIROC5. 



Fig. 3. Bias of monthly median precipitation simulated in MarkSim
HadGEM2

 

The average absolute error of HadGEM2
higher than that of MarkSim-MIROC5 in 19 of 
these micro-regions. In the others, the
in errors between the two models was irrelevant. 
The same occurred with the Willmott index [3
and the lowest values were located in micro
regions 02, 27 and 30. 
 

Average errors above 70 mm, in at least one of 
the models, were found in 80.7% of the micro
regions. It is noteworthy that, even considering 
the high variability (CV > 70%) of the inter
rainfall averages observed in the study area 
(Table 2) by other authors [4
of this magnitude can be considered substantial,
even though the agreement of the
of the variables is high (d > 0.70), beca
they represent approximately 73% of the              
monthly mean value observed in the                   
region. 
 

The models were adjusted by testing multiple 
regression methods, with the polynomial method 
having the best performance in correcting the 
cyclical regime of oscillations in the region's 

Table 3. Model performance indicators in relation to the territorial delineation of the study
 

Indicators  MIROC5
d 0,631 
MAPE* 73,41 
R² 0,722 
Pbias* -38,79 
(C’) 0,536 
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Fig. 3. Bias of monthly median precipitation simulated in MarkSim-MIROC5 (A) and MarkSim
HadGEM2-ES (B) models between 2009 and 2018 

The average absolute error of HadGEM2-ES was 
MIROC5 in 19 of 

regions. In the others, the difference 
in errors between the two models was irrelevant. 
The same occurred with the Willmott index [34], 
and the lowest values were located in micro-

Average errors above 70 mm, in at least one of 
the models, were found in 80.7% of the micro-

even considering 
(CV > 70%) of the inter-annual 

rainfall averages observed in the study area 
(Table 2) by other authors [45,46], errors               
of this magnitude can be considered substantial, 

though the agreement of the behaviour                 
of the variables is high (d > 0.70), because                
they represent approximately 73% of the              
monthly mean value observed in the                   

The models were adjusted by testing multiple 
regression methods, with the polynomial method 

correcting the 
cyclical regime of oscillations in the region's 

precipitation. This was due to the behavior 
pattern of the errors in the time series (Fig. 2). 
Thus, the adjustment increased its agreement 
coefficient to 0.845 and 0.851 for the models 
MarkSim-HadGEM2-ES and MarkSim
respectively. The adjustment and quality 
coefficients generated for each model are 
expressed in the equations contained in Figs. 4C 
and 4D. 
 

The calibration generated an increase in 
agreement between the simulations and the
observed data (Table 5 and Fig. 5), which 
increased the performance level of the model 
and provided better temporal adjustments in 
seasonal oscillations. 
 

Durbin-Watson's statistics resulted in values of 
5.08 and 4.89 for the residuals of the calibration 
equations of the Mark-HadGEM2-
MIROC5 models, respectively. Thus, there is 
significant confidence (p≤0,05) that the residues 
do not present autocorrelation and that, 
therefore, the calibration equations are adequate 
[36]. 

 

able 3. Model performance indicators in relation to the territorial delineation of the study

MIROC5 HadGEM2 Performance
0,629 - 
66,54 Unsatisfactory
0,724 - 

 -27,26 Unsatisfactory
0,535 Unsatisfactory

*significative (p≤0,05) 
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pattern of the errors in the time series (Fig. 2). 
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ES and MarkSim-MIROC5, 
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coefficients generated for each model are 
expressed in the equations contained in Figs. 4C 

The calibration generated an increase in 
agreement between the simulations and the 
observed data (Table 5 and Fig. 5), which 
increased the performance level of the model 
and provided better temporal adjustments in 

Watson's statistics resulted in values of 
5.08 and 4.89 for the residuals of the calibration 

-ES and Mark-
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therefore, the calibration equations are adequate 
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Table 4. Model performance indicators in each micro-region of agricultural expansion 
 

ID (d) MAE (mm) Pbias (%) 
 Had Miroc Had Miroc Had Miroc 
1 0,83 0,81 60,18 68,08 33,00 -39,84 
2 0,29 0,26 83,15 87,35 -23,54 -24,19 
3 0,56 0,61 139,99 140,34 18,69 18,12 
4 0,89 0,88 73,93 86,58 19,40 12,34 
5 0,87 0,87 81,12 76,98 -5,06 -31,82 
6 0,79 0,78 71,61 70,32 -61,70 -49,31 
7 0,68 0,67 85,10 89,66 -106,0 -112,8 
8 0,87 0,88 64,12 59,48 -6,99 -8,88 
9 0,81 0,80 62,10 55,94 45,61 18,00 
10 0,85 0,87 81,59 72,86 -4,47 -22,59 
11 0,56 0,61 139,99 140,34 18,69 18,12 
12 0,80 0,80 67,15 70,57 -28,30 -38,17 
13 0,69 0,73 67,89 53,23 90,56 49,31 
14 0,87 0,87 81,12 76,98 -5,06 -31,82 
16 0,87 0,87 81,12 76,98 -5,06 -31,82 
17 0,80 0,81 63,82 62,90 42,73 22,42 
18 0,38 0,41 150,41 126,97 -48,93 -37,55 
19 0,51 0,46 127,79 123,40 25,92 26,69 
20 0,87 0,85 83,13 76,36 -57,19 -37,10 
21 0,87 0,88 64,12 59,48 -6,99 -8,88 
23 0,87 0,90 82,56 72,87 16,47 28,21 
26 0,89 0,89 82,25 88,40 -26,53 -18,59 
27 0,45 0,43 192,65 188,05 -14,65 -12,16 
28 0,86 0,89 94,63 75,33 -34,06 -7,18 
29 0,86 0,86 94,15 92,92 -8,51 -6,46 
30 0,38 0,41 150,41 126,97 -8,93 -7,55 
31 0,64 0,60 86,73 71,33 -71,23 -28,52 

 

 
 

Fig. 4. Regression analysis between observed precipitation (O RAIN) and simulated by 
HadGEM2-ES (A) and MIROC5 (B) models. As well as the polynomial adjustment of the 

HadGEM2-ES (C) and MIROC5 (D) models with correction of the outliers 
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Table 5. Performance indicators in relation to the territorial delimitation of the study after the 
adjustment 

 
Indicators  MIROC5  HadGEM2 Performance 
d 0,851 0,845 Very Good 
MAPE* 20,82 26,73 Satisfactory 
R² 0,839 0,840 Very Good 
Pbias* -1,935 -9,667 Very Good 
C’ 0,779 0,774 Very Good 

*(p≤0,05) 

 

 
 

Fig. 5. Monthly averages of observed rainfall (O RAIN) and simulated by the adjusted models 
HadGEM2-ES (H adjust) and MIROC5 (M adjust) 

 

4. CONCLUSION 
 

Although both models reproduce well the 
seasonality of intra-annual precipitation, they 
present a high degree of overestimation in the 
rainy months and, despite presenting satisfactory 

levels of agreement in most micro regions, the 
bias was higher than 25% on a regional scale 
and varied from 5 to 112% on a micro-regional 
scale, being classified as "unsatisfactory" in most 
of the micro-regions analysed. The models have 
opposite biases in several micro-regions located 
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at the northern limit of the study area, and in the 
regional scale the MarkSim-MIROC5 tends to 
have a lower overestimation. 
 
The large biases of many micro-regions and in 
the region, determined a weak correlation 
between the data simulated by both models in 
relation to the observed data. This affected their 
performance coefficients, which were classified 
as unsatisfactory in all spatial scales analysed. 
This is reinforced by the values presented in the 
absolute average error, since the great variability 
of intra- and inter-annual precipitations 
determined errors greater than 70 mm in several 
of them. Therefore, the percentage of regional 
average error above 65% reinforces the 
unsatisfactory performance of the unadjusted 
models. 
 
In this context, this study shows that the data 
generated in the climate models MarkSim-
HadGEM2-ES and MarkSim-MIROC5 require 
correction of systematic errors prior to their use 
in regional projections aiming at multiple 
objectives, especially in the planning of public 
policies that require greater accuracy on the 
quantity and spatial and temporal distribution of 
rainfall. The adjustment of the data generated by 
the Mark-sim model, through polynomial 
regression and outlier correction, proved to be 
promising to improve its performance 
coefficients. 
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