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Abstract

In the present paper, we show the equivalent definitions of the joint essential maximal numerical
range. In the current paper, we show that the properties of the classical numerical range such as
compactness also hold for the joint essential maximal numerical range. Further, we show that
the joint essential maximal numerical range is contained in the joint maximal numerical range.

Keywords: Numerical range; essential maximal numerical range; maximal numerical range.

2010 Mathematics Subject Classification: 47LXX, 46N10, 47N10.

1 Introduction and Preliminaries

We denote by B(X) the algebra of (bounded) linear operators acting on complex Hilbert space X
with inner product ⟨, ⟩ and norm ∥.∥. Stampfli in [1] introduced and studied the concept of maximal
numerical range of a bounded operator T on B(X) and used it to derive an identity for the norm
of derivation. The maximal numerical range of an operator T is denoted by MaxW (T ) and defined
as MaxW (T ) = {r ∈ C : ⟨Txn, xn⟩ → r, where xn ∈ X; ∥xn∥ = 1 and ∥Txn∥ → ∥T∥}.
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Recall here that a derivation on a Hilbert space X is a linear transformation δ : X → X that satisfies
δ(xy) = xδ(y) + δ(x)y ∀x, y ∈ X. Recall also that derivation δ is said to be an inner derivation if
for a fixed x we have δ : y → xy − yx. For an operator T ∈ B(X), the inner derivation is denoted
and defined as δT (Y ) = TY − Y T where Y ∈ B(X). Stampfli [1] determined the norm of an inner
derivation and showed that ∥δT ∥ = 2 inf{∥T − λ∥ : λ ∈ C}. Several other properties of the set
MaxW (T ) are known. For instance, it is clear from the following theorem that the set MaxW (T )
is nonempty, closed and convex.

Theorem 1.1. MaxW (T ) is nonempty, closed and convex subset of the closure of numerical range.

The proof of the theorem can be found in Stampfli [1].

The concept of maximal numerical range was later generalised by Ghan in [2] to the joint maximal
numerical range, MaxWm(T ), of an m−tuple operator T = (T1, ..., Tm) ∈ B(X). The joint maximal
numerical range of T = (T1, ..., Tm) ∈ B(X), denoted by MaxWm(T ), is defined as,

MaxWm(T ) = {r ∈ Cm : ⟨Tkxn, xn⟩ → rk, where xn ∈ X; ∥xn∥ = 1 and ∥Tkxn∥ → ∥Tk∥;
1 ≤ k ≤ m}.

In the case k = 1, it is the usual maximal numerical range of an operator T . From the properties of
the joint maximal numerical range, it is known that MaxWm(T ) does not have translation property
by scalar, that is MaxWm(βT + αI) ̸= βMaxWm(T ) + α ∀ β, α ∈ Cm.

In particular, it is known that MaxWm(T ) ∩ MaxWm(T + β) = ∅ for any
0 ̸= β = (β1, ..., βm) ∈ Cm (see [3]).

Several other properties of the set MaxWm(T ) are also known as shown by the following results.

Theorem 1.2. The following conditions are equivalent for an operator T = (T1, ..., Tm) ∈ B(X).

(i) 0 ∈ MaxWm(T )

(ii) ∥T∥2 + |r|2 ≤ ∥T∥2 ∀ r = (r1, ..., rm) ∈ Cm

(iii) ∥T∥ ≤ ∥T + r∥ ∀ r = (r1, ..., rm) ∈ Cm

The proof of the theorem can be found in Khan [2].

Lemma 1. Suppose T = (T1, ..., Tm) ∈ B(X), ∥Tk∥ = 1 and ∥xn∥ = 1.

If ∥Tkxn∥2 ≥ (1− ϵ), then ∥ (T ∗
k Tk − I)xn∥2 ≤ 2ϵ.

Proof. Since T ∗
k Tk − I ≥ 0 it follows that,

∥ (T ∗
k Tk − I)xn∥2 = ∥T ∗

k Tkxn∥2 − 2∥Tkxn∥2 + ∥xn∥2

=
(
∥T ∗

k Tkxn∥2 − ∥Tkxn∥2
)
−

(
∥Tkxn∥2 − ∥xn∥2

)
≤ 2ϵ.

It is known that MaxWm(T ) is compact but is not always nonempty for

T = (T1, ..., Tm) ∈ B(X). It is also not always convex. In the following theorem, we use the classical
Toeplitz-Hausdorff Theorem to show one case in which MaxWm(T ) is convex.

Theorem 1.3. Let T = (T1, ..., Tm) ∈ B(X) be an m−tuple of operators. The set MaxWm(T ) is
convex.
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Proof. Let λ = (λ1, ..., λm), µ = (µ1, ..., µm) ∈ MaxWm(T ).

Since λ = (λ1, ..., λm), µ = (µ1, ..., µm) ∈ MaxWm(T ), it implies that there exist xn, yn ∈ X such
that ∥xn∥ = 1, ∥Tkxn∥ → ∥Tk∥, ⟨Tkxn, xn⟩ → λ; 1 ≤ k ≤ m
and ∥yn∥ = 1, ∥Tkyn∥ → ∥Tk∥, ⟨Tkyn, yn⟩ → µ; 1 ≤ k ≤ m.

Let Mn be a subspace spanned by xn and yn and Pn be a projection of X onto Mn. Suppose
Tn = PnTkPn, then ⟨Tkxn, xn⟩ = ⟨Tkyn, yn⟩ are in the numerical range of PnTkPn. By Toeplitz-
Hausdorff Theorem, W (PnTkPn) is convex and so for each n we can choose αn, βn with νn =
αnxn + βnyn = 1 (where νn is a sequence in X). If η is a point on the line segment joining
λ = (λ1, ..., λm) and µ = (µ1, ..., µm) then ⟨Tkνn, νn⟩ → η and ∥νn∥ = 1. Note that |⟨xn, yn⟩| ≤ θ < 1
for n sufficiently large. This implies that the angle between xn and yn is bounded away from 0.
Therefore, there exists a constantM such that |αn| ≤ M and |βn| ≤ M for n sufficiently large, where
∥ν∥ = ∥αnxn + βnyn∥ = 1. By Lemma 1, ∥ Tkνn∥ = ⟨T ∗

k Tkνn, νn⟩ = ⟨T ∗
k Tk(αnxn + βnyn), (αnxn +

βnyn)⟩ = ∥νn∥2 − 2Mϵ where ϵn → 0. That is, ∥ (T ∗
k Tk − I)xn∥ → 0 and ∥ (T ∗

k Tk − I) yn∥ → 0 as
n → ∞. Thus ∥Tkνn∥ → 1 as n → ∞ implying that ∥Tνn∥ → ∥T∥ as n → ∞.

We also recall that MaxWm(T ) corresponds to the joint numerical range produced by maximal
vectors (vectors x such that ∥xn∥ = 1 and ∥Txn∥ = ∥T∥·∥xn∥ = ∥T∥) when X is finite dimensional.
See [2] for this and more.

Recall here that the joint numerical range of an m-tuple operator T = (T1, ..., Tm) ∈ B(X) is
denoted and defined as,

Wm(T ) =

{(
⟨T1x, x⟩, ..., ⟨Tmx, x⟩

)
: x ∈ X, ⟨x, x⟩ = 1

}
.

This study of joint numerical range of an m-tuple operator T = (T1, ..., Tm) ∈ B(X) was generalised

to the study of the joint numerical range of the Aluthge transform T̃ of an m-tuple operator
T = (T1, ..., Tm) in [4]. This notion was also generalised to the study of the joint essential numerical

range of Aluthge transform T̃ of an m-tuple operator T = (T1, ..., Tm) in [5]. Here, the Aluthge

transform T̃ of the operator T is defined as the operator T = |T |
1
2U |T |

1
2 where T = U |T | is any

polar decomposition of T with U a partial isometry and |T | = (T ∗T )
1
2 .

2 Joint Essential Maximal Numerical Range

Fong [6] introduced the essential maximal numerical range to study the norm of a derivation on
Calkin algebra in 1997. The essential maximal numerical range, MaxWe(T ), is defined as

MaxWe(T ) = {r ∈ C : ⟨ Txn, xn⟩ → r, xn → 0 weakly and ∥Txn∥ → ∥T∥e}.

Here, ∥T∥e denotes the essential norm of T defined by ∥T∥e = inf{∥T + K∥ : K ∈ K(X)} where
K(X) is the ideal of all compact operators in B(X).

It is clear that ∥δt∥ = 2∥t∥ if and only if 0 ∈MaxWe(T ) where t is the image of T in the Calkin
algebra. See [6].

Lemma 2. MaxWe(T ) is nonempty, closed and convex subset of the essential numerical range.

See Fong [6] for the proof.

In the following theorem, Reλ stands for the real part of λ ∈ C while Imλ stands for the imaginary
part of λ ∈ C. Here, Re(T ) = 1

2
(T + T ∗) while Im(T ) = 1

2i
(T − T ∗) where, for an operator

T ∈ B(X), T ∗ denotes its adjoint. We remind the reader that the adjoint of an operator T ∈ B(X)
is a linear operator T ∗ ∈ B(X) defined by the relation ⟨Tx, y⟩ = ⟨x, T ∗y⟩ ∀y, x ∈ X.
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Theorem 2.1. Suppose T ∈ B(X). Then MaxWe(T )∩ MaxWe(T − α) = ∅ for 0 ̸= α ∈ C.

Proof. Let µ ∈ MaxWe(T ) ∩ MaxWe(T − α). Then µ ∈ MaxWe(T ) and µ ∈ MaxWe(T − α). By
definition, when µ ∈ MaxWe(T ), then there exist a sequence {xn} ∈ X of unit vectors converging
weakly to 0 ∈ X such that ⟨ Txn, xn⟩ → r and ∥Txn∥ → ∥T∥e for r ∈ C.

Also, for α ∈ C, when µ ∈ MaxWe(T − α) then there exists a sequence {xn} ∈ X of unit vectors
converging weakly to 0 ∈ X such that ⟨ (T −α)xn, xn⟩ → r and ∥(T −α)xn∥ → ∥T −α∥e for r ∈ C.
Now, Since µ ∈ MaxWe(T ), then, for r ∈ C we have

∥(T + r)xn∥2 = ∥Txn∥2 + 2Re r⟨Txn, xn⟩+ |r|2.

From this, we have
∥T∥2 + 2Re rµ+ |r|2 ≤ ∥T + r∥2. (1)

Also, since µ ∈ MaxWe(T − α), then for r ∈ C we have

∥ [(T − α) + r]xn∥2 = ∥(T − α)xn∥2 + 2Re r⟨(T − α)xn, xn⟩+ |r|2

which implies that
∥T − α∥2 + 2Re rµ+ |r|2 ≤ ∥T − α+ r∥2. (2)

Letting r = −α and r = α in (1) and (2) respectively, we obtain

∥T∥2 − 2Re αµ+ |α|2 ≤ ∥T − α∥2

and

∥T − α∥2 + 2Re αµ+ |α|2 ≤ ∥T∥2.

Combining these two results yield |α|2 ≤ 0 which is impossible. Thus the assumption is wrong.

The notion of essential maximal numerical range was generalised to the study of the joint essential
maximal numerical range by Khan [3] who proved certain results analogous to the single operator
case. The joint essential maximal numerical range, denoted by MaxWem(T ), is defined as

MaxWem(T ) = {r ∈ Cm : ⟨Tkxn, xn⟩ → rk, xn → 0 weakly and ∥Tkxn∥ → ∥Tk∥e; 1 ≤ k ≤ m}.

Here, ∥Tk∥e denotes the essential norm of Tk defined by ∥Tk∥e = inf{∥T +K∥ : K ∈ K(X)}. In [3],
it was shown that MaxWem(T ) ∩ MaxWem(T + β) = ∅ for 0 ̸= β = (β1, ..., βm) ∈ Cm. In the case
k = 1, the joint essential maximal numerical range becomes the usual essential maximal numerical
range, MaxWe(T ).

The joint essential maximal numerical range was also studied by Cyprian, Masibayi and Okelo [7]
who together showed that it is convex among other interesting results. In [8], Cyprian generalised the
notion of the joint essential maximal numerical range to the study on the joint maximal numerical
range of aluthge transform T̃ of an m-tuple operator T = (T1, ..., Tm).

This paper is a continuation of the study of the notion of the joint essential maximal numerical
range which is helpful in the development of the research on numerical ranges. We examine some
properties of the set MaxWem(T ). The following theorem proves some equivalent definitions of the
joint essential maximal numerical range.

Theorem 2.2. Suppose X is an infinite dimensional complex Hilbert space and T = (T1, ..., Tm) ∈
B(X). Let r = (r1, ..., rm) ∈ Cm. The following properties are equivalent:

1. r ∈ MaxWem(T )

2. There exists an orthonormal sequence {xn}∞n=1 ∈ X such that
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⟨ Tkxn, xn⟩ → rk and ∥Tkxn∥ → ∥Tk∥e ; 1 ≤ k ≤ m.

3. There exists a sequence {xn}∞n=1 ∈ X of vectors converging weakly to 0 ∈ X such that

⟨ Tkxn, xn⟩ → rk and ∥Tkxn∥ → ∥Tk∥e ; 1 ≤ k ≤ m.

4. There exists an infinite - dimensional projection P such that

P (Tk − rkI)P ∈ K(X) and ∥TkP∥e = ∥Tk∥e ; k = 1, ...,m.

Proof. Note that 1 ⇔ 2 and 1 ⇔ 4 was proved by Khan [3].

To prove that 2 ⇒ 4, let {xn}∞n=1 ∈ X be an orthonormal sequence such that

⟨ Tkxn, xn⟩ → rk and ∥Tkxn∥ → ∥Tk∥e ; 1 ≤ k ≤ m.

By passing to a subsequence we can assume that

∞∑
n=1

|⟨(Tk − rk)xn, xn⟩|2 < ∞ (3)

Let n1 = 1. Then

∞∑
n=1

|⟨(Tk − rk)xn1 , xn⟩|2 ≤ ∥(Tk − rk)xn1∥
2

and

∞∑
n=1

|⟨(Tk − rk)xn, xn1⟩|
2 ≤ ∥(Tk − rk)

∗xn1∥
2. Thus, by Bessels inequality, there is an integer

n2 > n1 such that

∞∑
n=n2

|⟨(Tk − rk)xn1 , xn⟩|2 < 2−1 and

∞∑
n=n2

|⟨(Tk−rk)xn, xn1⟩|
2 < 2−1. If this procedure is repeated, a strictly increasing sequence {nt}∞t=1

of positive integers is obtained such that we have

∞∑
n=nt+1

|⟨(Tk − rk)xnt , xn⟩|2 < 2−t

and
∞∑

n=nt+1

|⟨(Tk − rk)xn, xnt⟩|
2 < 2−t (4)

Both (3) and (4) imply that
∞∑

t, l =1

|⟨(Tk − rk)xt, xnl⟩|
2 < ∞ (5)

If P is an orthogonal projection onto the subspace M spanned by xn1 , xn2 , ..., then
∞∑

t, l =1

|⟨(PTkP − rkP )xnt , xnl⟩|
2 =

∞∑
t, l =1

|⟨(Tk − rk)xnt , xnl⟩|
2 < ∞ by (5), hence PTkP is a Hilbert

- Schmidt operator and therefore PTkP − rkP ∈ K(X).

We now show that (3) implies (2). Let {xn}∞n=1 ∈ X be a sequence of vectors converging weakly to
0 ∈ X such that ⟨ Tkxn, xn⟩ → rk and ∥Tkxn∥ → ∥Tk∥e ; 1 ≤ k ≤ m.

Construct an orthonormal sequence {yn}∞n=1 such that ∥Tkyn∥ → ∥Tk∥e − 1
n

and |(Tkyn, yn)| < 1
n

as follows. Suppose that the set {x1, ..., xn} has been constructed. Let M be the subspace spanned
by x1, ..., xn and P be the projection onto M. Then we have ∥Pxn∥ → 0 as n → ∞.
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Let zn =

∥∥∥∥(I − P )xn

∥∥∥∥−1(
(I − P )xn

)
.

We have Tkzn =

∥∥∥∥(I − P )xn

∥∥∥∥−1(
Tk(I − P )xn

)
. This gives

⟨Tkzn,zn⟩=
⟨∥∥∥∥(I − P )xn

∥∥∥∥−1(
Tk(I − P )xn

)
,

∥∥∥∥(I − P )xn

∥∥∥∥−1(
Tk(I − P )xn

)⟩
=

∥∥∥∥(I−P )xn

∥∥∥∥−2{
⟨Tkxn,xn⟩−⟨Tkxn,Pxn⟩−⟨TkPxn,xn⟩+⟨TkPxn,Pxn⟩

}
→ rk.

We choose n large enough such that |⟨Tkzn, zn⟩ − rk| < (n + 1)−1. If we let zn = xn+1 we get
|⟨Tkxn+1, xn+1⟩ − rk| < (n+ 1)−1

To show that (3) implies (1), suppose that for a point rk ∈ Cm there is a sequence {xn} ∈ X such
that ⟨Tkxn, xn⟩ → rk. Since every sequence {xn} → 0 weakly, and ∥xn∥ = 1, we have
rk → MaxWem(T ).

We state the following theorem without proof since its proof runs like that of Theorem 2.1

Theorem 2.3. Let T = (T1, ..., Tm) ∈ B(X). Then MaxWem(T ) ∩ MaxWem(T − α) = ∅ for
0 ̸= α = (α1, ..., αm) ∈ Cm.

Theorem 2.4. Let T = (T1, ..., Tm) ∈ B(X). If 0 ∈ MaxWem(T −α), then ∥T −α∥2 + |α|2 ≤ ∥T∥2
for all α = (α1, ..., αm) ∈ Cm.

Proof. Suppose 0 ∈ MaxWem(T − α), then there exists a sequence xn ∈ X such that
⟨(Tk − αk)xn, xn⟩ → 0, where xn ∈ X; ∥xn∥ = 1 and ∥(Tk − αk)xn∥ → ∥(Tk − αk)∥; 1 ≤ k ≤ m.
But ∥Tk − αk∥2 + |αk|2 = lim

n→∞
∥Tkxn∥2 ≤ ∥Tk∥2; 1 ≤ k ≤ m. Taking finite summation on both

sides we obtain
m∑

k=1

∥Tk − αk∥2 +
m∑

k=1

|αk|2 ≤
m∑

k=1

∥Tk∥2. Hence, ∥T − α∥2 + |α|2 ≤ ∥T∥2 for all

α = (α1, ..., αm) ∈ Cm.

Recall that a subset C of a linear space M is convex if ∀x, y ∈ C the segment joining x and y is
contained in C, that is, tx + (1 − t)y ∈ C ∀t ∈ [0, 1]. A set S is starshaped if ∃ y ∈ S such that
∀x ∈ S the segment joining x and y is contained in S, that is λx+ (1− λ)y ∈ S ∀λ ∈ [0, 1].

A point y ∈ S is a star center of S if there is a point x ∈ S such that the segment joining x and y
is contained in S.

Starshapedness is related to convexity in that a convex set is starshaped with all its points being
star centers.

Theorem 2.5. Suppose T = (T1, ..., Tm) ∈ B(X). Then MaxWem(T ) is nonempty, compact and
each element r ∈ MaxWem(T ) is a star center of MaxWm(T ). Moreover, MaxWem(T ) is convex.

Proof. First, we prove that MaxWem(T ) is nonempty. To do this, from Theorem 2.2, there exists
an orthonormal sequence {xn}∞n=1 ∈ X such that

⟨ Tkxn, xn⟩ → rk and ∥Tkxn∥ → ∥Tk∥e; 1 ≤ k ≤ m.

Thus the sequence {⟨Tkxn, xn⟩}∞n=1 is bounded. Choose a subsequence and assume that ⟨Tkxn, xn⟩
converges. Then MaxWem(T ) is nonempty.
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The compactness of MaxWem(T ) can be seen right from its properties. That is, MaxWem(T ) =
MaxWem(T + K) ⊆ MaxWm(T + K) : K ∈ K(X). Since MaxWm(T + K) compact, the joint
essential numerical range is also compact.

To prove that each element r ∈ MaxWem(T ) is a star center of MaxWm(T ), it should be shown that
(1−λ)p+λr ∈ MaxWm(T ) : λ ∈ [0, 1] where r ∈ MaxWem(T ) and p ∈ MaxWm(T ). Assume without
loss of generality that ∥T∥ = 1. Suppose s ∈ MaxWm(T ) so that s = λr + (1− λ)p. Let {xn} and
{en} be orthonormal sequences in X such that r = ⟨Txn, xn⟩, p = ⟨Ten, en⟩ and ∥xn∥ = ∥en∥ = 1.
Then,

s = λ⟨Txn, xn⟩+ (1− λ)⟨Ten, en⟩

=

⟨
T
√
λ xn,

√
λ xn

⟩
+

⟨
T
√
1− λ en,

√
1− λ en

⟩
=

⟨
(T

√
λ xn + T

√
1− λ en), (

√
λ xn +

√
1− λ en)

⟩
∥∥∥∥√λ xn +

√
1− λ en

∥∥∥∥2

=

(∥∥∥∥√λ xn

∥∥∥∥2

+

∥∥∥∥√1− λ en

∥∥∥∥2)
= λ∥xn∥2 + (1− λ)∥en∥2

= λ+ (1− λ) = 1

Thus, (1− λ)r + λp ∈ MaxWm(T ).

Convexity of MaxWem(T ) is proved by showing that for r, p ∈ MaxWem(T ) and λ ∈ [0, 1] we have
λr+ (1− λ)p ∈ MaxWem(T ). Now, r ∈ MaxWem(T ) = MaxWem(T +K) for every K ∈ K(X) and
p ∈ MaxWem(T ) = MaxWem(T +K) ⊆MaxWm(T +K).
By Theorem 2.5, λr + (1− λ)p ∈ MaxWm(T +K).
Thus, λr + (1 − λ)p ∈ ∩{ MaxWm(T + K) : K ∈ K(X)} = MaxWem(T ). Hence MaxWem(T ) is
convex.

The following theorem shows the relation between the sets MaxWem(T ) and MaxWm(T ). Here, we

let T = U |T | be any polar decomposition of T with U a partial isometry and |T | = (T ∗T )
1
2 , where,

for an operator T ∈ B(X), T ∗ denotes its adjoint.

Theorem 2.6. Let T ∈ B(X) and |T | = (T ∗T )
1
2 . Then MaxWem(T ) ⊆ MaxWm(T ).

Proof. Assume, without loss of generality that ∥T∥ = 1 and let r = (r1, r2, ..., rm) ∈ MaxWem(T ).
Then, there exists a sequence {xn} ∈ X of unit vectors converging weakly to 0 ∈ X such that
⟨Txn, xn⟩ → r and ∥Txn∥ → ∥T∥e. Then, ∥|T |1/2xn∥ = ∥|T |1/2∥ = 1 as n → ∞ and
∥(1− |T |)xn∥ = 0 as n → ∞. Also, ∥(1− |T |3)xn∥ = 0 as n → ∞.
Thus, lim

n→∞
∥T |T |1/2xn∥ = lim

n→∞
⟨|T |3xn, xn⟩ = 1 = ∥T∥. And,

lim
n→∞

∣∣∣∣⟨Txn, xn⟩−⟨T |T |
1
2 xn, |T |

1
2 xn⟩

∣∣∣∣= lim
n→∞

∣∣∣∣⟨U |T |
1
2 xn, |T |

1
2 xn⟩−⟨T |T |

1
2 xn, |T |

1
2 xn⟩

∣∣∣∣
= lim

n→∞

∣∣∣∣⟨(U |T |1/2−U |T ||T |1/2)xn, |T |1/2xn

⟩∣∣∣∣
= lim

n→∞

∣∣∣∣⟨(U |T |1/2)(1− |T |)xn, |T |1/2xn⟩
∣∣∣∣

≤ lim
n→∞

∥U |T |1/2∥∥(1− |T |)xn∥∥|T |1/2xn∥

= 0.
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If we let zn = (|T |1/2xn)/(∥|T |1/2xn∥) then {zn} ∈ X is a sequence of unit vectors converging
weakly to 0 ∈ X such that ⟨ Tzn, zn⟩ → r and ∥Tzn∥ → ∥T∥e. Thus r ∈ MaxWm(T ). Hence
MaxWem(T ) ⊆ MaxWm(T ).

3 Conclusions

Section 2, studied the properties of the joint essential maximal numerical range. For instance, we
proved the equivalent definitions of the joint essential maximal numerical range and proved that
the set MaxWem(T ) is nonempty, compact and convex. It was also shown that the set MaxWem(T )
is a contained in the set MaxWm(T ).
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