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ABSTRACT 
 

Our aim is to develop a computational model of the corrosion forms known as scallops and flutes, 
common in karst environment.  
This model is designed to take in account dynamical interactions between successive forms, which 
has previously never be done, and to be as simple as possible. 
We present preliminary results corresponding to numerical simulations that have been run during 
February 2018. 
The evolution of scallops and flutes is summarized in some simple equations that model how the 
length of a form evolves, how too large forms split into smaller forms and how too small forms are 
erased by larger ones. These equations are used in programs written in C language. They enable 
to investigate how a system of numerous scallops or flutes evolves and to investigate the 
corresponding statistical distribution. 
The preliminary results we present are very encouraging because of their good quantitative 
agreement with the well-known Curl relationship in the case of steady flows. When the velocity of 
the water (or air) responsible for the formation of scallops or flutes change, the model predicts that 
the average size of the forms changes too. However, in such a situation, the Curl relationship is not 
always accurately verified. 
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This progressive model depends upon few parameters and does not require huge computing 
power. Further comparisons with field data may render it even more realistic, particularly regarding 
the statistical distributions it generates. 
 

 
Keywords: Scallops; flutes; sauter average; curl relationship; modeling; karst. 
 

1. INTRODUCTION 
 
Scallops and flutes are very common in karst 
environments. These are corrosion forms created 
either when water flows in contact with soluble 
rocks (such as limestone or gypsum) or when air 
flows in contact with ice (which can sublimate) 
[1,2]. The formation of scallops (“scalloping”) has 
also been reported in industrial context, for 
example in the power-generating industry when 
water flows in contact with carbon steel 
components [3]. However we will focus on the 
geological aspect of the phenomenon. 
 

Scallops and flutes correspond to a 
hydrodynamical instability. Eddies forms and 
trigger a non-uniform corrosion (or sublimation): 
the resulting objects are called flutes when               
they look like runnels perpendicular to the 
mainstream and scallops when they have the 
shape depicted in Fig. 1. In turn, these forms 
maintain the generation of vorticity. For the rest 
of the present article, the word “scallops” will 
stand for both flutes and scallops unless 
otherwise specified. 
 

 
 

Fig. 1. Scallops inside the “Scialet de 
l'Aspirateur” (Vercors, France, European 

Union) 
 

During the 60' and 70', Curl [4] investigated the 
development of scallops using analogical models 
made up with Paris plaster. He pointed out the 
importance of the turbulence and proposed a 
relationship between the averaged length (period) 
of the scallops and the velocity. 

Since then, the Curl relationship is widely used in 
order to get information about past flows, mainly 
in caves (see for instance [5,6,7]). Despite this 
fact, several uncertainties remain regarding the 
detailed understanding of scallops. Different 
values of the Reynolds number corresponding to 
the Curl relationship have been proposed. For 
instance, whereas Curl [8] proposes Re = 
(average length X velocity)/(kinematical 
viscosity)=22500, Goodchild and Ford [9] 
propose Re = 11600. 

 
The statistical distribution of the scallops is 
neither symmetrical nor gaussian. Statistical 
distributions are given, for instance, in [9]. As 
explained in [2], it is widely admitted that a 
Sauter mean has to be done to suppress the 
influence of very short scallops that would occur 
because of bedrock heterogeneities. 

 
Attempts have been made to model the fashion 
scallop forms and remain stable. Whereas 
certain authors are looking for very general 
mechanisms, the results of other authors are 
very dependent on precise numerical details 
such as profiles or solubility rates. 
 
On the one hand, Thomas [10] puts the 
emphasis on eddy patterns, regardless of 
material removal (by dissolution or mechanic 
transportation) like in Fig. 2. We also have 
proposed in our ancient work [11] a simple link 
between the existence of stable scallops and the 
stability of the vortices (eddies) existing inside. 
 
On the other hand, despite their good qualitative 
accordance, certain results of the numerical 
simulations carried out by Hammer, Lauritzen 
and Jamtveit [12] differ according to the material 
(limestone or plaster) and the size of the 
computation grid. The computational model more 
recently developed by Grm, Šuštar, Rodič and 
Gabrovšek [13] is very precisely tuned regarding 
dissolution rates and turbulence. This model 
predicts that when the initial profile isn't deep 
enough, no scallop will form. This seems in 
contradiction with the linear analysis developed 
by Claudin, Durán and Andreotti [14]. These 
models could be confronted with the 
experimental work of Villien, Zheng and Lister [3], 
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which shows that the formation of scallops 
depends upon the presence of heterogeneities in 
the material (“Defect theory” versus “passive-bed 
theory”). 
 

 
 

Fig. 2. When the velocity increases, an eddy 
appears inside the scallop. With a higher 

velocity, it becomes unstable 
Numerical results of the author using the Flow 

Solver Gerris 
Available:http://gfs.sourceforge.net/wiki/index.php/

Main_Page 
Upstream at left 

 
Whatever the answers, the previous questions 
are on the subject of scallops formation and on 
the subject of the stability of a single scallop (or a 
set of identical scallops) of given profile 
subjected to a given velocity. Few investigation 
has been done about the evolution of several 
different scallops once formed. In their recent 
analogical modelling, Slabe, Hada and Knez [15] 
observe the formation of scallops under certain 
circumstances. However, this is a final 
observation requiring a partial destruction of the 

experimental device. They do not investigate the 
way scallops move once formed, or interact with 
each other. Even in experimental conditions, with 
a faster pace than in natural conditions, such a 
dynamical observation remains difficult. 
 
This is why we are developing a dynamical 
model, using the simplest possible elements, in 
the way of [16]. For the first time (according to 
the literature review we have made) we are able, 
although roughly, to model a system of 
numerous different scallops interacting with each 
other. This theoretical and computational 
approach is interesting because it reconciles 
facts that, before, would have been regarded as 
contradictory. On one hand, any individual 
scallop may be stable within a large interval of 
velocity but on the other hand, the way scallops 
evolve and interact explains the size selection 
corresponding to the Curl relationship. On one 
hand, too short scallops could disappear and too 
long scallops could split into shorter forms but on 
the other hand, a statistical equilibrium exists, 
corresponding to a non-gaussian distribution. 
 

2. MATERIALS AND METHODS 
 
2.1 The Base of the Model 
 
It is a one-dimensional model. It can be regarded 
either as a model of flutes or as a simplification 
of the dynamics of scallops (evolving on a two-
dimensional surface). A population of N scallops 
is studied. From upstream to downstream, the 
scallop (i) follows the scallop (i-1) and precedes 
the scallop (i+1). V stands for the velocity (water 
or air) and η for its kinematic viscosity. The 
scallop (i) has a length Li. If scallops were stable 
only for a given very precise Reynolds number, 
they would certainly not form in natural 
conditions, because of velocity fluctuations (at 
least seasonal). Some make the hypothesis (H1) 
that scallops are stable within a range of 
Reynolds numbers: Re min < VLi / η < Re max. As 
the sizes of scallops observed in natural 
conditions do not range over several decades 
(see Figure 19 of [1]), Re min may be close to 
3400 and Re max close to 34000, with Curl's 
22500 in-between. Choosing other values, in a 
larger or shorter range, would give different 
numerical results but would not alter the essence 
of the model.  

 
We make the simplifying assumption (H2) that 
when a scallop evolves, the material is removed 
only in the front part of the scallop (Fig. 3). H2 is 
sustained by the results of Grm, Šuštar, Rodič 
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and Gabrovšek (see Figure 10 of [13]). Because 
of H2, the front edge of (i) moves only because Li 
evolves, and the rear edge of (i) moves only 
because Li-1 evolves. 
 
The eddies are localised inside the scallops (Fig. 
2), thus it is reasonable to assume (H3) that the 
evolution of Li depends only of (i). 
 
Therefore, we model the evolution of Li as 
follows: 
 
(H4): If VLi / η > Re max then (i) splits into two 
smaller scallops of lengths rLi (upstream) and (1-
r)Li (downstream). The dimensionless parameter 
r is within the range [0,1]. r may be close to 0.4 
(Fig. 4) although choosing other values would 
not change the nature of the model. 
 
(H5): If VLi / η < Re min then (i) no longer evolves; 
its front edge no longer moves. This is a rough 
modelling of the fact the eddy inside the scallop 
disappears or becomes too weak to enhance 
matter transfer. Such a short scallop will be 
sooner or latter erased by its neighbours. 

(H6): If Re min < VLi / η < Re max then Li evolves and 
the front edge of (i) moves. dLi /dt has the 
dimension of a velocity. The only other 
parameters having the dimension of a velocity 
are V and η / Li. On the basis of elementary 
dimensional analysis, they can be combined in a 
lot of different ways. The simplest, that will be 
used in the model and that needs only one 
additional dimensionless parameter, is dLi /dt = A 
V

α
(η / Li)

1-α
. 

 
Taking in account other quantities, such as 
diffusion coefficients or thermal diffusivity, that 
have all the same dimension than η, would 
simply lead to replace η by an expression such 
as η 

β
 (Diffusivity)

1-β
and dLi /dt would remain 

proportional to V
α
Li

α-1
. In addition, the 

dimensionless quantity A is not essential to the 
model: it can be reduced to the unity choosing an 
adequate time scale. There is no particular 
constraint on the exponent α. However, it is 
reasonable to assume that the larger scallops 
(with a more efficient eddy transferring more 
matter) will move the faster: values of α below 1 
are unlikely. 

 

 
 

Fig. 3. Evolution of scallops 
The departure of matter occurs mainly on the front part of the form 

Solid line: before evolution 
Dashed line: after evolution 

 

 
 

Fig. 4. Modelling the splitting of a large scallop 
Numerical results of the author using the Flow Solver Gerris 

Gerris is available at: http://gfs.sourceforge.net/wiki/index.php/Main_Page 
Right: just before the threshold 

Left: just after the threshold 
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2.2 The Numerical Simulation 
 
Because of H1 to H6, it is a chaotic system the 
number whose degrees of freedom varies 
according to time. This is why, instead of 
focusing of the precise evolution of the lengths of 
a small number of scallops, which would be 
possible using H6, we focus on extensive 
numerical computation. The model is 
implemented using the C language in a UNIX 
environment. The Li are stored in an array, 
whose size is dynamically adjusted when 
necessary. Periodic boundary conditions have 
been chosen in order to avoid that the number of 
scallops indefinitely increases. This means that 
the length of the last scallop has an influence on 
L0. The total length of the ring of scallops 
remains constant during its evolution: this is a 
conservative system, within the meaning of [16]. 
 
The system can be initialized in several different 
ways: a) each scallop has a length randomly 
chosen within the stability interval; b) each 
scallop has a length randomly chosen within the 
stability interval but with a logarithmic the 
distribution; c) the scallops are randomly 
distributed between 90% and 100% of the 
maximal size; d) the scallops are randomly 
distributed between 100% and 110% of the 
minimal size; e) a scallop of maximal size is 
created among N-1 scallops of minimal size.  
 
Once the system initialized, the computation can 
be run until a steady state is reached. Then, if 
necessary, the velocity can be changed in order 
to investigate what happens. Inside the program, 
the velocity is expressed in cm/s whereas the 
lengths are expressed in mm. In order to produce 
the preliminary results that will be presented and 
discussed below, we chose α=1, η Re max = 0.05 
m

2
.s

-1
 and η Re max = 0.005 m

2
.s

-1
, η 

corresponding to the kinematic viscosity of water 
at 0 °C (1.70 10-6 m2.s-1). Others values may be 
tested in further studies in order to approach the 
reality closer. 
 
The “computational time” of the program is only 
proportional to the real time: the aforementioned 
quantity A has been absorbed inside. However, 
this simplification does not prevent relative 
comparisons. Anyway, enough uncertainty 
remains about the dissolution rates of limestone 
(explained for example in [17]) to prevent from 
using a precise value of A. 
 
The source code has been compiled, and the 
programs have been run, on a laptop with a 

Pentium i5 processor and 8 GO RAM. The 
computation times were always short, by far less 
than a minute. The produced data have been 
post-processed using LibreOffice's spreadsheet. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Steady State and Influence of the 
Initial Conditions 

 
Four numerical simulations have been done with 
r=0.4, a velocity of 8 cm/s and different initial 
conditions with N=1000 scallops. Except for the 
very particular case of one scallop having the 
maximal size and 999 other having the minimal 
size, a steady state is quickly reached (Fig. 5). 
 
The Sauter length corresponding to the steady 
state is close to 480 mm, which corresponds, 
using the Curl relationship, precisely to a velocity 
of 8 cm/s for 0°C water. 
 
The Sauter average fluctuates. This is normal 
with a system of finite size. It must be pointed out 
that different initial conditions are tantamount to 
rings of different lengths, hence systems of 
different sizes once the steady state reached. 
 
The final statistical repartitions of the lengths (Fig. 
6) seem very few dependent on the initial 
conditions, except in the particular case 
aforementioned. There is a gap between the 
upper classes corresponding to very large 
scallops and the lower classes corresponding to 
small scallops. This is perfectly understandable: 
a scallop of intermediate size will grow if 
surrounded by smaller scallops, will be erased if 
surrounded by larger scallops. With sizes            
varying over a range of less than a decade, 
using logarithmic coordinates is meaningless.  
However, such a trend recalls “bimodal 
repartitions” evoked – because of other reasons 
– by Lauritzen in [1]. 
 

3.2 Length Distribution and Influence of r 
 
Four numerical simulations have been done with 
r= 0.2 or 0.4 or 0.6 or 0.8 (Fig. 7), always with a 
velocity of 8 cm/s. The systems have been 
initialized with scallops of random lengths. 
 
The Sauter lengths corresponding to the steady 
states are only slightly different, as well as their 
statistical repartitions. There is always a gap 
between very large scallops and small scallops. 
As evoked above, modifying r doesn't alter the 
nature of the model.  
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Fig. 5. Evolution of the sizes of scallops with different initial conditions 
The ring initially contains 1000 scallops 

Upper left: random initialization 
Upper right: initialization with large scallops 

Lower left: particular case, initialization with one large scallop and 999 small ones 
Lower right initialization with small scallops 

 

 
 

Fig. 6. Statistical distribution of the sizes of the scallops 
Left: fractions corresponding to 10 classes (linear, from zero to the maximal length) 

Right: corresponding cumulative distribution 
 

The less a scallop splits in a symmetric way, the 
larger the gap is. The observation of natural 
scallops does not reveal such a marked gap 
between small and very large scallops. Unless 
observational biases could explain that, this gap 

must be regarded as a discrepancy between a 
one-dimensional model and the two-dimensional 
reality. Data about flutes and guided scallops (as 
described in [18]) could enable a deeper 
investigation. 



 
 
 

 
Boudinet; JGEESI, 14(2): 1-10, 2018; Article no.JGEESI.40309 

 
 

 
7 
 

 
 

Fig. 7. Influence of r upon the statistical distribution of scallops 
Left: distribution, exhibiting a gap whatever the value or r 

Right: Sauter average, slightly varying with r 
 

 
 

Fig. 8. Evolution of the sizes of scallops when the velocity decreases, then increases 
Up: evolution of the mean lengths 

Middle: fluctuations of the product velocity X Sauter length used in the Curl relationship 
Down: correlations between Sauter and ordinary average 
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Fig. 9. Evolution of the sizes of scallops when the velocity increases, then decreases 
Up: evolution of the mean lengths 

Middle: fluctuations of the product used in the Curl relationship 
Down: correlations between Sauter and ordinary means 

 
3.3 Evolution with Velocity Variations 
 
This is a very important point: it is widely 
admitted that, in the case of long-time velocity 
variations (for instance due to climate change or 
tectonics), the velocity recorded in the scallops is 
the last one. However, as large scallops can 
remain stable if the velocity decreases, the 
velocity recorded in the scallops may also be, 

under certain circumstances, the slower one. We 
had developed such an hypothesis in [11]. 
 
Two numerical simulations have been run: one 
with an initial velocity of 8 cm/s decreasing step 
by step to 4 cm/s then increasing to 8 cm/s (Fig. 
8) and one with an initial velocity of 4 cm/s 
increasing to 8 mm/s then decreasing to 4 cm/s 
(Fig. 9). 
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In both simulations, once a steady state is 
reached, the size of the scallops reflects the 
present velocity and not the slower one. This 
leads us to retract the hypothesis developed in 
[11]. However, two details must be pointed out. 
First, when a steady state is not reached yet, the 
size of the scallops do not correspond, through 
the Curl relationship, to the present velocity. 
Second, what happens when the velocity 
decreases is not symmetrical of what happens 
when it increases. In the first case, fluctuations 
are more important and there is a long-time trend 
to over-estimate the product velocity X Sauter 
length. In other words, there may be a tendency 
to misestimate the velocity deduced from the 
Sauter length: reconstituting past flows using 
present scallops may remain an imprecise 
operation. 
 
Both simulations predict a good correlation 
between the Sauter average and the ordinary 
average, the later being about 34% higher                  
than the former. Establishing such a correlation 
is not our main aim but it could be a very                   
simple way to compare field data and numerical 
results. 

 
4. CONCLUSION 
 
The dynamics of interaction between 
neighbouring scallops fully explains the link 
between flow velocity and statistical properties, 
without taking in account the precise details of 
scallops formation and stability. In the case of 
steady states, through the Curl relationship, 
there is a perfect match between the Sauter 
length issued from the modelling and the flow 
velocity. 
 
This model relies upon a very limited number of 
parameters. It doesn't need any diffusion 
coefficient, thermal diffusivity or solubility rate. 
Only four parameters are needed: the limits of 
the stability interval, the ratio r describing how a 
too large scallop splits, the exponent α. 

 
Practically, roughly tuning only two of these 
parameters (the upper and lower limits of the 
stability interval) has been enough to produce 
preliminary realistic results. In addition, running 
the programs does neither require a long 
computation time or very powerful cluster-
computing. 
 
We can simulate what could happen when 
velocity variations occur, which is not possible 
with static models. This has lead us to the same 

conclusion than in [11]: Certain past velocities 
may not be precisely accessible knowing only the 
present Sauter length. 
 
Examining the detailed statistical distribution of 
scallops, flutes and related two or one-
dimensional corrosion forms might lead to further 
progress. 
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