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ABSTRACT

In this paper we calculate the Bloch vector length with respect to the eigenvalues of the density
matrix and the mixed states.

Keywords: Bloch vector.

1 INTRODUCTION

For a qubit (two level quantum system) a density
matrix can be expressed by a 3-dimensional
vector, the Bloch vector, and any such vector
has to lie within the so-called Bloch ball. The
inside the ball corresponds to a physical state,

i.e. a density matrix. The pure states lie on the
sphere and the mixed ones inside.

In this article we consider n-level quantum
systems and present the length of the
generalized Bloch vector with respect to the
eigenvalues of the density matrix.
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2 SOME RESULTS

Any density matrix ρ of n-level system can be
expressed as a linear combination of matrices λi

called generalized Pauli matrices :

ρ =
1

n

(
I +

√
n(n− 1)

2
r · λ

)
,

where r = (x1, x2, · · · , xn2−1) ∈ Rn2−1 is the
generalized Bloch vector. To find the eigenvalues
τ of the density matrix ρ, we should solve
det(τI − ρ) = 0, where det(τI − ρ) is the
characteristic polynomial of ρ. In the general case
the characteristic polynomial is

det(τI − ρ) = τn + c1τ
n−1 + c2τ

n−2

+ · · ·+ cn−1τ + cn
(2.1)

and we consider the coefficient c2 at τn−2. c2 is
given by [1] and [2] :

c2 =
1

2

(
(Tr ρ)2 − Tr(ρ2)

)
=

1

2

(
1− Tr(ρ2)

)
,

since for density matrices Tr ρ = 1. According to
[1] we have

Tr(ρ2) =
1

n

(
1 + (n− 1)|r|2

)
and

c2 =
n− 1

2n

(
1− |r|2

)
.

Let {τ1, τ2, · · · , τn} be the roots of (2.1) and thus
the eigenvalues of ρ. We note that

c1 =
n∑

i=1

τi = 1 (2.2)

and we express c2 as

c2 =
∑

1≤i<j≤n

τiτj

:= P2(τ1, τ2, · · · , τn),
(2.3)

where P2 is the second order symmetric
polynomial of n variables. From the equation
(2.3) we obtain the following results :

Lemma 2.1. Let P2(τ1, τ2, · · · , τn) be as in (2.3)
and m be a real number. Then

(a)

P2(mτ1,mτ2, · · · ,mτn)

= m2P2(τ1, τ2, · · · , τn),

(b)

P2(τ1 +m, τ2 +m, · · · , τn +m)

= P2(τ1, τ2, · · · , τn)

+
m(n− 1)(mn+ 2)

2
,

(c)

P2(τ
m
1 , τm

2 , · · · , τm
n )

=
1

2

{(
n∑

i=1

τm
i

)2

−
n∑

i=1

τ2m
i

}
.

Proof. (a) By (2.3) we easily observe that

P2(mτ1,mτ2, · · · ,mτn)

=
∑

1≤i<j≤n

mτi ·mτj

= m2
∑

1≤i<j≤n

τiτj

= m2P2(τ1, τ2, · · · , τn).

(b) From (2.3) we have

P2(τ1 +m, τ2 +m, · · · , τn +m)

=
∑

1≤i<j≤n

(τi +m)(τj +m)

=
∑

1≤i<j≤n

(
τiτj +mτi +mτj +m2)

=
∑

1≤i<j≤n

τiτj +m
∑

1≤i<j≤n

τi

+m
∑

1≤i<j≤n

τj +m2
∑

1≤i<j≤n

1.

(2.4)

Then by (2.2) we obtain

2
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m
∑

1≤i<j≤n

τi +m
∑

1≤i<j≤n

τj

= m {τ1(n− 1) + τ2(n− 2) + · · ·
+τn−1}

+m {τ2 + 2τ3 + · · ·+ (n− 1)τn}
= m(n− 1) (τ1 + τ2 + · · ·+ τn)

= m(n− 1)

and

m2
∑

1≤i<j≤n

1

= m2 {(n− 1) + (n− 2) + · · ·+ 1}

= m2 · (n− 1)n

2
.

Applying the above results into Eq. (2.4)
we deduce that

P2(τ1 +m, τ2 +m, · · · , τn +m)

=
∑

1≤i<j≤n

τiτj +m(n− 1)

+m2 · (n− 1)n

2

= P2(τ1, τ2, · · · , τn)

+
m(n− 1)(mn+ 2)

2
.

(c) Since

(
n∑

i=1

τm
i

)2

= (τm
1 + τm

2 + · · ·+ τm
n )2

= τ2m
1 + τ2m

2 + · · ·+ τ2m
n

+ 2P2(τ
m
1 , τm

2 , · · · , τm
n )

=

n∑
i=1

τ2m
i + 2P2(τ

m
1 , τm

2 , · · · , τm
n ),

we conclude that

P2(τ
m
1 , τm

2 , · · · , τm
n )

=
1

2

{(
n∑

i=1

τm
i

)2

−
n∑

i=1

τ2m
i

}
.

Let τ = (τ1, τ2, · · · , τn). Then the Bloch vector r
of n-level system [3] satisfies

|r|2 =
n

n− 1

(
|τ |2 − 1

n

)
. (2.5)

Proposition 2.1. The length of the Bloch
vector |r| for state ρ is proportional to the
distance between τ = (τ1, τ2, · · · , τn) and ν =

(
1

n
,
1

n
, · · · , 1

n
) in the eigenvalue simplex, where

τi are the eigenvalues of ρ.

Proof. See [3].

As an application of Proposition 2.1, we consider
the following theorem :

Theorem 2.2. The length of the Bloch vector |r|
for state ρ is

|r| =

√
2n3|τ − ν|2 − (2n− 1)(n− 1)

2n2(n− 1)
,

where τ = (τ1, τ2, · · · , τn) and the mixed state

ν = (
1

n2
,
1

n2
, · · · , 1

n2
). Note that τi are the

eigenvalues of ρ.

Proof. Let δ = τ − ν and the mixed state ν =

(
1

n2
,
1

n2
, · · · , 1

n2
). Then by (2.2) we have

n∑
i=1

δi =

n∑
i=1

τi −
n∑

i=1

νi

= 1−
n∑

i=1

1

n2

= 1− 1

n2
· n(n+ 1)

2

=
1

2
− 1

2n
.

According to (2.5) and the above identity we
deduce that

3
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|r|2 =
n

n− 1

(
|τ |2 − 1

n

)
=

n

n− 1

(
|δ + ν|2 − 1

n

)
=

n

n− 1

(
n∑

i=1

(δi + νi)
2 − 1

n

)

=
n

n− 1

(
n∑

i=1

(δi +
1

n2
)2 − 1

n

)

=
n

n− 1

(
n∑

i=1

δ2i + 2
1

n2

n∑
i=1

δi

+
1

n4

n∑
i=1

1− 1

n

)

and so

|r|2 =
n

n− 1

{
n∑

i=1

δ2i + 2
1

n2

(
1

2
− 1

2n

)
+

1

n4
· n(n+ 1)

2
− 1

n

}
=

n

n− 1

(
|δ|2 + 3

2n2
− 1

2n3
− 1

n

)
.

Finally we have

|r| =

√
n

n− 1

(
|δ|2 + 3

2n2
− 1

2n3
− 1

n

)
.

It is known that there are no valid states such that
|r| > 1. Pure states have |r| = 1, but mixed
states have |r| < 1. Thus to fit the mixed states
we range |τ − ν| from 0.5 ∼ 0.81. As shown in
Fig. 1, 2, and 3, the Bloch vector hardly affect by
n even though n extends to a large number.

However when we alter |τ − ν| a little, the Bloch
vector changes rapidly in Fig. 4 and 5 comparing
with the above pictures.

Fig. 1. |r| versus n (2 ≤ n ≤ 5) and |τ − ν|
(0.5 ≤ |τ − ν| ≤ 0.8)

Fig. 2. |r| versus n (2 ≤ n ≤ 20) and |τ − ν|
(0.5 ≤ |τ − ν| ≤ 0.8)

Fig. 3. |r| versus n (2 ≤ n ≤ 400) and |τ − ν|
(0.5 ≤ |τ − ν| ≤ 0.8)
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Fig. 4. |r| versus n (2 ≤ n ≤ 5) and |τ − ν|
(0.7 ≤ |τ − ν| ≤ 0.8)

Fig. 5. |r| versus n (2 ≤ n ≤ 5) and |τ − ν|
(0.8 ≤ |τ − ν| ≤ 0.81)

Remark 2.1. From Theorem 2.2 we can obtain

lim
n→∞

|r|

= lim
n→∞

√
2n3|τ − ν|2 − (2n− 1)(n− 1)

2n2(n− 1)

= |τ − ν|,

which implies that for the mixed state the Bloch
vector is proportional to the distance between

τ = (τ1, τ2, · · · , τn) and ν = (
1

n2
,
1

n2
, · · · , 1

n2
).

Theorem 2.3. Let τ = (τ1, τ2, · · · , τn) satisfying
τ1 = τn, τ2 = τn−1, τ3 = τn−2, · · · , that is, τi =

τn−i+1 for 1 ≤ i ≤ n and ν = (
1

n2
,
2

n2
, · · · , n

n2
).

Then the length of the Bloch vector |r| for state ρ
is

|r| =

√
6n3|τ − ν|2 − (2n− 1)(n− 1)

6n2(n− 1)
.

Note that τi are the eigenvalues of ρ.

Proof. Let δ = τ − ν and the mixed state ν =

(
1

n2
,
2

n2
, · · · , n

n2
). Then we can know that

n∑
i=1

iδi =

n∑
i=1

iτi −
n∑

i=1

iνi

=

n∑
i=1

iτi −
n∑

i=1

i · i

n2

=
n+ 1

2
− 1

n2
· n(n+ 1)(2n+ 1)

6

=
n

6
− 1

6n

since by the assumption τi = τn−i+1 and (2.2)
we deduce that

n∑
i=1

iτi

= τ1 + 2τ2 + · · ·+ (n− 1)τn−1 + nτn

= n
n∑

i=1

τi − {(n− 1)τ1 + (n− 2)τ2+

· · ·+ τn−1}

= n

n∑
i=1

τi − {(n− 1)τn + (n− 2)τn−1

+ · · ·+ τ2}

= n
n∑

i=1

τi −
n∑

i=1

(i− 1)τi

= (n+ 1)

n∑
i=1

τi −
n∑

i=1

iτi

= (n+ 1)−
n∑

i=1

iτi

5
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and so

n∑
i=1

iτi =
n+ 1

2
.

According to (2.5) and the above results we have

|r|2 =
n

n− 1

(
|τ |2 − 1

n

)
=

n

n− 1

(
|δ + ν|2 − 1

n

)
=

n

n− 1

(
n∑

i=1

(δi + νi)
2 − 1

n

)

=
n

n− 1

(
n∑

i=1

(δi +
i

n2
)2 − 1

n

)

=
n

n− 1

(
n∑

i=1

δ2i + 2
1

n2

n∑
i=1

iδi

+
1

n4

n∑
i=1

i2 − 1

n

)

and so

|r|2 =
n

n− 1

{
n∑

i=1

δ2i + 2
1

n2

(
n

6
− 1

6n

)
+

1

n4
· n(n+ 1)(2n+ 1)

6
− 1

n

}
=

n

n− 1

(
|δ|2 + 1

2n2
− 1

6n3
− 1

3n

)
.

Thus we conclude that

|r| =

√
n

n− 1

(
|δ|2 + 1

2n2
− 1

6n3
− 1

3n

)
.

3 CONCLUSION

We calculate the length of the Bloch vector for
the special mixed state cases in Theorem 2.2,
Remark 2.1, and Theorem 2.3.
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