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Abstract

In this paper, we define a new topological structure of D-closed, D-continuous and D-fixed point
property and discussed of its properties, some result for this subject are also established.

Keywords: D−metric; supra topology.

2000 Mathematics Subject Classification : 54E99.

1 Introduction

The concept of a D-metric space was introduced by Dhage in [1]. A nonempty set X, together with
a function D : X ×X ×X → [0,∞) is called a D-metric space, denoted by (X,D) if D satisfies the
followings:
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D1) D(x, y, z) = 0 if and only if x = y = z (coincidence),

D2) D(x, y, z) = D(p(x, y, z)) , where p is a permutation of x, y, z (symmetry),

D3) D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z) for all x, y, z,a ∈ X (tetrahedral inequality).

The nonnegative real function D is called a D-metric on X. Dhage [1] claimed that D-metric
convergence defines a Hausdorff topology and that the D-metric is (sequentially) continuous in all
the three variables. Many authors (see [2]-[11] and [12]-[14]) have taken these claims for granted
and used them in proving fixed point theorems in D-metric spaces. For more discussion, we refer
the reader to consrlt ([15]-[21] and [22], [23]). Authors of [24] gave examples to show that in a
D-metric space:

1) D-metric convergence does not always define a topology.

2) Even when D-metric convergence defines a topology, it need not be Hausdorff.

3) Even when D-metric convergence defines a metrizable topology, the D-metric need not be
continuous even in a single variable.

Definition 1.1. [1], [8]. A sequence {xn} in a D-metric space (X,D) is said to be convergent
(or D-convergent) if there exists an element x in X such that limn,m D(xn, xm, x) = 0, i.e. for any
ϵ > 0, there exists j ∈ N such that D(xn, xm, x) < ϵ for all n,m ≥ j. In such a case, {xn} is said to

converge to x and x is called a limit of {xn}. We shall use the notation {xn} D→ x to denote that
{xn} is D-convergent to x.

Definition 1.2. [1], [8]. A sequence {xn} in a D-metric space (X,D) is said to be Cauchy ( or
D-Cauchy) if, for any ϵ > 0, there exists j ∈ N such that D(xn, xm, xk) < ϵ for all n,m, k ≥ j.

Definition 1.3. [1], [8]. A D-metric space (X,D) is said to be complete (or D-complete) if every
D-Cauchy sequence in X is D-convergent in X.

We shall use the same notation used in [24]. for Ac ,namely.

Notation 1.1. [24]. For a subset A of a D-metric space (X,D) , Ac denotes the set {x ∈
X : there exists xn ∈ A such that {xn}

D→ x}. For any set X, P (X) denotes the power set of X.

S. V. R. Naidu, K.P. R. Rao, and N. Srinivasa Rao have obtained the following nice example.

Example 1.2. [24]. Let X = A ∪ B ∪ {0}, where A = {2−n : n ∈ N} and B = {2n : n ∈ N}.
Then there exists a D-metric on X such that:

(i) (X,D) is a complete D-metric space in which D-metric convergence does not define a topology.

(ii) There are convergent sequences in X with infinitely many limits.

(iii) The operator φ : P (X) → P (X) defined by φ(A) = Ac does not define a closure operator.
More precisely,(Bc)c ̸= Bc.

2 D-closed Sets

If A is any subset of a D-metric space (X,D) and if a ∈ A, then {xn} D→ a, where xn = a for n ∈ N,
because limn,m D(xn, xm, a) = 0, Thus A ⊆ Ac. Imitating the case of sequentially closed sets we
have the following.
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Definition 2.1. A subset E of a D-metric space (X,D) is said to be D-closed provided E = Ec (

equivalently Ec ⊆ E), i.e. if for any xn ∈ E and p ∈ X , if {xn}
D→ p, then p ∈ E. The complement

of a D-closed set is called D-open. A set in (X,D) will be called D-clopen set if it is D-closed and
D-open simultaneously.

The following results are easy to observe.

Proposition 2.1. Let (X,D) be a D-metric space. If {xn}
D→ p then every D-open set H containing

p must contain a tail of {xn}.

Proof. Let H be a D-open set in (X,D) containing p. Suppose on the contrary, that H does not
contain any tail of {xn}.Then there exists a sequence of natural numbers 1 < m1 < m2 < · · · such

that xmn /∈ H for all n ∈ N. Since {xn}
D→ p therefore {xmn}

D→ p. Since X − H is D-closed and
xmn ∈ X −H , therefore p ∈ X −H which is absurd.

Proposition 2.2. Every finite set in a D-metric space (X,D) must be D-closed.

Proof. Let A be a finite subset of X and let xn ∈ A ,p ∈ X such that {xn}
D→ p. Then

limn,m D(xn, xm, x) = 0, yields the existence of a natural number j such that xn = p for all n ≥ j
(i.e. {xn} has a constant tail p, p, p, · · · ). Hence p ∈ A.

Proposition 2.3. Let D : X ×X ×X → [0,∞) be a D-metric on X having a finite range. Then
every subset A of X is D-closed.

Proof. Similar to the proof of Proposition 2.2.

Theorem 2.1. The intersection of any collection of D-closed sets in a D-metric space (X,D) is
D-closed.

Proof. Let ℑ = {Fα : α ∈ ∆} be a collection of D-closed sets in X and let xn ∈
∩

α∈∆ Fα, p ∈ X

such that {xn} D→ p. Since xn ∈ Fα, {xn} D→ p and Fα is a D-closed set, therefore p ∈ Fα (α ∈ ∆).
Hence p ∈

∩
α∈∆ Fα. Consequently,

∩
α∈∆ Fα is D-closed.

Now it is meaningful to have the following definition.

Definition 2.2. If A is a subset of a D-metric space (X,D) , we define the D-closure of A (denoted
by D − cl(A) or clD(A)) as the intersection of all D-closed sets in X containing A.

It is clear that D − cl(A) is the smallest D-closed set in X containing A. It is also clear that an
arbitrary union of D-open sets in a D-metric space (X,D) is still D-open. The fact that the subsets
ϕ and X are D-clopen in (X,D) is obvious. Finally, if A is a subset of B then clD(A) ⊆ clD(B).

Definition 2.3. [24]. A subfamily T ∗ of X is said to be a supra topology on X if:

(1) ϕ, X ∈ T ∗.

(2) If Fα ∈ T ∗, α ∈ ∆, then
∪

α∈∆ Fα ∈ T ∗

(X,T ∗) is called a supra topological space. The elements of T ∗ are called supra open sets in (X,T ∗)
and complement of a supra open set is called a supra closed set.

Definition 2.4. [24]. The supra closure of a set A is denoted by supra cl(A) and is defined as
supra cl(A) = ∩{B : B is a supra closed set and A ⊆ B}. The supra interior of a set A is denoted
by supra int(A), and defined as supra int(A) = ∪{B : B is a supra open set and B ⊆ A}.
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Theorem 2.2. Let (X,D) be a D-metric space and T ∗
D = {A ⊆ X : A is D− open set in (X,D)}.

Then we have the following.

(i) T ∗
D is a supra topology on X.

(ii) Every finite subset of X is supra closed in (X,T ∗
D).

(iii) For any A subset of X, clD(A) = supra cl(A).

Example 1.2 verifies the following result.

Theorem 2.3. There exists a D-metric space (X,D) such that:

(i) There exists B ⊆ X such that clD(clDB) ̸= clD(B).

(ii) There exist subsets M , P of X such that clD(M ∪ P ) ̸= clD(M) ∪ clD(P ).

Proof. Indeed , if Proposition 2.3 (ii) fails then (X,T ∗
D) will be a topological space and this is

absurd. As in usual metric space (X, d) , the collection ℑ(d) of all open balls is indeed a subbase
for the metric topology T (d). Fortunately, ℑ(d)is a base for T (d). In a similar way, the collection
ℑ∗(D) of all D-open sets in a D-metric space (X,D) is a subbase for some topology T (D) on
X. Unfortunately, ℑ∗(d) need not be a base for some topology on X. So, one starts looking for
properties of this topology T (ℑ∗(d)) generated by ℑ∗(d) as a subbase (rather than a base!).

Finally, in this section, we have the following result.

Corollary 2.4. .Let D : X × X × X → [0,∞) be a D-metric on X having a finite range. Then
every subset A of X is D-closed, i. e, D generates the discrete topology on X.

Proof. Immediate consequence of Proposition 2.3.

3 D-continuous Functions

If (X,ℑ) and (Y, T ) are topological spaces such that (X,ℑ) is first countable at p ∈ X. Then a
function f : (X,ℑ) → (Y, T ) is continuous at p if and only if f is sequentially continuous at p (i.e.
for any sequence {xn} converging in (X,ℑ) to p, then {f(xn)} must converge in (Y, T ) to f(p)).

Imitating this idea in D-metric spaces, we get the following.

Definition 3.1. Let f : (X,D) → (Y, ρ) be a function between two D-metric spaces. Then f is said
to be Dρ-continuous at p ∈ X provided that for any sequence {xn} converging in (X,ℑ) to p, then
{f(xn)} must converge in (Y, ρ) to f(p). A function f : (X,D) → (Y, ρ) is called Dρ-continuous if
f is Dρ-continuous at each p in X. In the case X = Y and D = ρ , we write D-continuous instead
of Dρ-continuous.

Definition 3.2. Let f : (X,D) → (Y, ρ) be a function between two D-metric spaces. Then f is
said to be Dρ-weakly continuous at p ∈ X provided that for any ρ-open set H in Y containing f(p),
there exists a D-open set U in X containing p such that f(U) ⊆ H. A function f : (X,D) → (Y, ρ)
is called Dρ-weakly continuous if f is Dρ-weakly continuous at each p in X. In the case X = Y and
D = ρ , we write D-weakly continuous instead of Dρ-weakly continuous.

The following result is an analogue to a well-known result in general topology.

Theorem 3.1. The followings are equivalent for the function f : (X,D) → (Y, ρ) between two
D-metric spaces.
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(i) f is Dρ-weakly continuous.

(ii) For any ρ-open set H in Y , f−1(H) is D-open set in X.

(iii) For any ρ-closed set M in Y , f−1(M) is D-closed set in X.

Proof. (i) ⇒ (ii):Let H be a ρ-open set in Y. For each x ∈ f−1(H), then f(x) ∈ H. Since f is
Dρ-weakly continuous at x, there exists a D-open set Ux such that x ∈ Ux and f(Ux) ⊆ H(i.e.Ux ⊆
f−1(H)). Consequently, f−1(H) is a union of D-open sets in X, and hence is D-open.

(ii) ⇒ (iii):Let M be a ρ-closed set in Y . Then Y −M is ρ-open set in Y and hence f−1(Y −M)
is a D-open set in X. Consequently, X−f−1(Y −M) is a D-closed set in X, i.e.f−1(M) is a D-closed
set in X.

(iii) ⇒ (i): To show that f is Dρ-weakly continuous function ,let p ∈ X and H be any ρ-open set
in Y such that f(p) ∈ H. Then Y −H is a ρ-closed set in Y. Hence f−1(Y −H) is a D-closed set in
X. Thus X−f−1(Y −H) is a D-open set in X containing p. It is clear that f(X−f−1(Y −H)) ⊆ H.
Hence f is Dρ-weakly continuous.

Theorem 3.2. Let f : (X,D) → (Y, ρ) be a function between two D-metric spaces. If f is Dρ-
continuous then f is Dρ-weakly continuous.

Proof. Let M be any ρ-closed set in Y. To prove that f−1(M) is D-closed in X, let {xn} be any
sequence in f−1(M) converging in X to p. Then the sequence {f(xn)} is in M and converging in
Y to f(p).The fact that M is ρ-closed set in Y forces f(p) to belong to M. Hence p ∈ f−1(M).

4 D-fixed Point Property

We start this section with the following.

Definition 4.1. (i) AD-metric space (X,D) is said to have theD-fixed point property (abbreviated
D-f .p.p.) iff every D-continuous function f : (X,D) → (X,D) has a fixed point in X.

(ii)A D-metric space (X,D) is said to have the D-weakly fixed point property (abbreviated
D-w.f .p.p.) iff every D-weakly continuous function f : (X,D) → (X,D) has a fixed point in X.

The following result is an immediate consequence of Theorem 3.2.

Corollary 4.1. If a D-metric space has the D-w.f .p.p. then it has the D-f .p.p.

Definition 4.2. A D-metric space (X,D) is called D-disconnected provided there exists a partition
{A,B} for X consisting of two D-closed sets in X. (X,D) is called D-connected provided it is not
D-disconnected.

Definition 4.3. Let (X,D) be a D-metric space and A, B be two nonempty subsets of X. Then
A, B are called D-separated sets provided A ∩ clD(B) = B ∩ clD(A) = ∅.

The following result is needed for the next theorem.

Lemma 4.2. In a D-metric space (X,D), if A, B are two D-separated sets in X such that A∪B =
X. Then each of them is a D-clopen set in X.

Proof. Since B ⊆ clD(B) and A∩clD(B) = ∅ ,therefore A∩B = ∅. Now A∪B = X and A∩B = ∅
implies A = X − B. The fact that clD(B) ⊆ X − A = B implies B = clD(B),i.e. B is D-closed.
Similarly, A is a D-closed set in X. Consequently, A and B are D-clopen sets in X.

Now the proof of the following result becomes easy to follow.
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Theorem 4.3. The following conditions are equivalent for a D-metric space (X,D).

(i) (X,D) is D-disconnected.

(ii) There exists a D-clopen set A in X such that ∅ ̸= A ̸= X.

(iii) X has a partition consisting of two D-open sets.

(iv) X has a nontrivial D-separation.

(v) There exists a surjective Dρ-continuous function f : (X,D) → ({0, 1}, ρ), where ρ is any
D-metric on {0, 1}.

The following result will be needed later.

Theorem 4.4. Let (X,D) be a D-metric space and {A,B} be a partition of X consisting of D-closed
(D-open ) sets in X. Let a ∈ A and b ∈ B be fixed elements. Then the function f : (X,D) → (X,D)
defined by: f(A) = {b} and f(B) = {a}, is D-continuous( and hence D-weakly continuous).

Proof. To prove that f is D-continuous, let {xn} be any sequence in X and assume {xn}
D→ p.

Without loss of generality we may assume p ∈ A. To prove {f(xn)}
D→ f(p) we are going to show

that limn,m D(f(xn), f(xm), f(p)) = 0. To prove this, we claim that there exists j ∈ N such that
for all n ≥ j , f(xn) = b (i.e. xn ∈ A for n sufficiently large). To prove our claim, suppose not ,
i.e. for each j ∈ N there exists nj ∈ N such that nj > n and xnj /∈ A ( hence xnj ∈ B). Doing
this, we can find an infinite sequence of natural numbers 1 < n1 < n2 < · · · such that xnj ∈ B

for all j ∈ N. Since limn,m D(xn, xm, p) = 0 therefore limi,j D(xni , xnj , p) = 0. Thus {xnj}
D→ p.

Now xnj ∈ B and B is D-closed in X implies that p ∈ B, this is a contradiction. Now since our
claim becomes valid ,i.e. a tail of {xn} must be in A. Hence f(xn) = b for all n large enough. Thus

limn,m D(f(xn), f(xm), f(p)) = 0 , i.e. {f(xn)}
D→ f(p).

Definition 4.4. A D-metric space (X,D) is called a D-T0-space provided that for any x, y ∈ X,
x ̸= y ,there exists a D-open set H such that H ∩ {x, y} has exactly one element.

The following results are now ready to be proved.

Theorem 4.5. (i) If (X,D) has the D-f .p.p., then it is D-connected.
(ii) If (X,D) has the D-w.f .p.p., then it is D-connected.

Proof. (i) Let (X,D) be a D- metric space having the D-fixed point property. Suppose on the
contrary, that X is D-disconnected. Then X has a partition {A,B} consisting of D-closed sets in
X. Now pick a ∈ A and b ∈ B. Define f : (X,D) → (X,D) by: f(A) = {b} and f(B) = {a}.Then
f is D-continuous according to Theorem 4.4.Notice that f has no fixed point and this contradicts
the assumption that (X,D) has the D-w.f .p.p.
(ii) The proof is a direct consequence of (i) together with Proposition 4.2.

Theorem 4.6. (i) If (X,D) has the D-f .p.p., then it is a D-T0-space.
(ii) If (X,D) has the D-w.f .p.p., then it is a D-T0-space.

Proof. (i) Let (X,D) be a D- metric space having the D-fixed point property. Suppose on the
contrary, that X is not a D-T0-space. Then there exist p, q ∈ X, p ̸= q such that for any D-open
set H in X, either H ∩ {p, q} = ∅ or {p, q} ⊆ H. Define f : (X,D) → (X,D) by:

f(x) =

{
p if x ̸= p

q if x = p
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Then f clearly has no fixed point. To prove f is D-continuous, let H be any D-open set in X. Then

f−1(H) =

{
X if p ∈ H

∅ if p ∈ X −H
. Notice that for any D-open set H in X we have: q ∈ H if and only

if p ∈ H. Hence f is D-continuous, which gives us the contradiction.
(ii)The proof is a direct consequence of (i) together with Proposition 4.2.

5 Product of D-metric Spaces

Let us start with the following.

Proposition 5.1. Let (Xi, Di) be D-metric spaces(i = 1, · · · , n) and let X = X1×· · ·×Xn. Define
D : X ×X ×X → [0,∞) as follows:

D((x1, · · · , xn), (y1, · · · , yn), (z1, · · · , zn)) =
n∑

i=1

Di(xi, yi, zi).

Then D is a D- metric on X (we shall denote D by
∑n

i=1 Di ).

Proof. Straight forward.

Proposition 5.2. Let (X,D) be a D- metric space and ∅ ̸= A ⊆ X. Define D∗ : A×A×A → [0,∞)
as follows: D∗(x, y, z) = D(x, y, z). Then D∗ is a D-metric on A (D∗ will be denoted by D(A) ).

Proof. Straight forward.

The following result will be needed later.

Lemma 5.1. Let (Xi, Di) be D-metric spaces(i = 1, · · · , n) and let X = X1 × · · · × Xn. Define

D : X ×X ×X → [0,∞) as in Proposition 5.1. Let zk = (x
(1)
k , x

(2)
k , · · · , x(n)

k ) ∈ X (k ∈ N). Then

{zk}
D→ z = (p1, p2, · · · , pn) if and only if {xj

k}
Dj→ pj (j = 1, 2, · · · , n).

Proof. Straight forward.

Theorem 5.2. Let (Xi, Di) be D-metric spaces(i = 1, · · · , n) and let X = X1 × · · · ×Xn. Define
D : X×X×X → [0,∞) as in Proposition 5.1. If Ai is a Di-closed set in (Xi, Di) for i = 1, · · · , n.
Then A1 ×A2 × · · · ×An is a D-closed set in (X,D).

Proof. The proof is an immediate consequence of Lemma 5.1.

6 Conclusion

In this paper, we have given the notion of a new topological structure of D-closed, D-continuous
and D-xed point property and discussed of its properties, some result for this subject are also
established. We hope that our results can also be extended to other topological field.
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