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Abstract 
 

In this paper, a class of ∗-rings which is a generalization of ∗–reversible rings is introduced. A ring with 
involution ∗ is called central ∗–reversible if for � , � ∈ �, whenever �� � 0 , �∗� is central in �. Since 
every ∗–reversible ring is central ∗–reversible, sufficient conditions for central ∗–reversible rings to be ∗–
reversible is studied. We show that some results of ∗–reversible rings can be extended to central ∗–
reversible ring. For an Armendariz ring �, we prove that � is central ∗–reversible if and only if the 
polynomial ring �
�� is central ∗–reversible if and only if the Laurent polynomial ring �
� , ��� is 
central ∗–reversible.  
 

 
Keywords: ∗-reversible rings; weakly ∗–reversible rings; central reversible rings; central ∗–reversible 

rings. 
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1 Introduction 
 
Throughout this note we assume that rings are associative with identity unless otherwise stated. A ring � is 
reduced if it has no non zero nilpotent elements. A ring is called central reduced [1] if every nilpotent 
element of � is central. A ring � is called semicommutative if for all � , � ∈ �, �� � 0 implies ��� � 0 [2]. 
According to Lambek [3], a ring � is symmetric if for any � , � , � ∈ �, ��� � 0 implies ��� � 0 if and only 
if ��� � 0 implies ��� � 0. � is called reversible ring if �� � 0 ↔  �� � 0, for any � , � ∈ � [4]. Central 
reversible ring � is defined by Kose, et al. in [5] as follows: If for any � , � ∈ � , �� � 0 implies �� is 
central in �. Reduced rings, central reduced rings, symmetric rings and reversible rings are central 
reversible. An additive mapping ∗∶ � → � is called an involution if (��)∗ � �∗�∗ and (�∗)∗ � � for all � , � ∈ �. A ring equipped with an involution is called a ring with involution or ∗–ring. We say that an 
involution ∗ of a ring � is a semiproper involution if for any � ∈ �, ���∗ � 0 implies � � 0 [6]. Recently, 
the notion of reversibility is defined for a ∗-ring [7]. A ring � with an involution ∗ is called ∗–reversible if 
for any � , � ∈ �, �� � 0 implies �∗� � 0. A ∗–reversible ring is symmetric, reversible and 
semicommutative ring. A ring � with involution ∗ is called ∗–symmetric if for any elements � , � , � ∈�, ��� � 0 implies ���∗ � 0 [8]. It is clear that ∗–symmetric ring with unity is ∗–reversible. For ∗–
reversible ring �, it is proven that � is symmetric if and only if � is ∗–symmetric [8]. A ring � is called right 
(left) principally quasi-Baer [9] if the right (left) annihilator of a principal right (left) ideal of � is generated 
by an idempotent. Finally, a ring � is called right (left) principally projective if the right (left) annihilator of 
an element of � is generated by idempotent [10]. Throughout this paper, we use �(�), �(�) and �(�) to 
denote the center of a ring �, the set of all nilpotent elements in � and the prime radical, respectively. We 
write �
�� and �
� , ��� for the polynomial ring and the Laurent polynomial ring, respectively. 
 

2 Central ∗–Reversible Rings 
 
In this section we introduce a class of rings, called central ∗–reversible rings, which is a generalization of ∗–
reversible rings. 
 
2.1. Definition: A ring R with an involution * is called central *–reversible if whenever ab=0 for a, b∈R,b^* 
a is central in R. 
 
Cleary, ∗-reversible rings are central ∗–reversible. We supply an example to show that all central ∗–
reversible rings need not be ∗–reversible. We show that central ∗–reversible rings are weakly ∗–reversible 
rings. We prove that central ∗–reversible rings are abelian and there exists an abelian ring but not central ∗–
reversible. We prove that every central ∗–reversible ring is central ∗–semicommutative and 2-primal. 
Moreover, we prove that if � is reduced and central ∗–reversible ring, then the trivial extension �(�, �) is 
central ∗–reversible. For an Armendariz ring, we prove that � is central ∗–reversible if and only if the 
polynomial ring �
�� is central ∗–reversible if and only if the Laurent polynomial �
� , ��� is central ∗–
reversible. Finally, the Dorroh extension of R is central *–reversible if and only if a ring � is central ∗–
reversibl. 
 
2.2. Example: Let � be a commutative ring and consider the ring 
 

� � ��0 � �0 0 �0 0 0� |� ,  � ,  � ∈ ��. Let ∗ be an involution on � defined by 

 

�0 � �0 0 �0 0 0�
∗

� �0 � �0 0 �0 0 0�. Let � �0 �� ��0 0 ��0 0 0 � , B � �0 � � 0 0 � 0 0 0 � ∈ � with !" � 0.  
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Then 

"∗! � �0 � � 0 0 � 0 0 0 � �0 �� ��0 0 ��0 0 0 � � �0 0 � ��0 0 00 0 0 � ∈ �(�).  

 
Therefore, � is central ∗-reversible. 
 
Clearly, every ∗-reversible ring is central ∗-reversible. In the next example we will see the converse is not 
true in general.  
 
2.3. Example: Let � � ��#⨁��# which is a commutative ring under usual multiplication. Define the 
exchange involution ∗ on � by (� , �)∗ � (�, �), for all (� , �) ∈ �. It is clear that � is central ∗–reversible. 
Now, let � � (5 , 0), � � (4 , 3); then we see that �� � 0 while �∗� � (3 , 4)(5 , 0) � (5 , 0) ≠ 0. Hence � 
is not ∗–reversible. 
 
Our next study is to find conditions under which a central ∗–reversible ring is ∗–reversible. 
 
2.4. Proposition: If � is a central ∗-reversible ring, then � is ∗-reversible if � satisfies any of the following 
conditions. 
 1 − R is a ring with semiproper involution ∗.  2 − R is a right (left) principally projective ring. 3 − R is a right (left) principally quasi-Baer ring. 
 
Proof. First statement is clear. Conversely, assume that � is a central ∗-reversible ring and � ,  � ∈ � with �� � 0. Now consider the following cases. 
 1 − Let � be a ring with semiproper involution ∗. Since �∗� is central, �∗��(�∗�)∗ � �∗���∗� ���∗�∗�� � 0 and so �∗� � 0. Thus � is ∗-reversible. 2 − Let � be a right principally projective ring. Then there exists a central idempotent . ∈ � such that /0(�) � .�. Hence �. � 0. Since � ∈ /0(�) � .�, we have � � .�. It follows that �∗� �(.�)∗� � �∗.� � �∗�. � 0. Thus � is ∗-reversible. A similar proof may be given for left 

principally projective rings. 3 − Same as the proof of (2). 
 
2.5. Corollary: Let � be a ring with involution ∗. If � is central ∗–reversible, then the conditions below are 
equivalent. 
 (1) � is a right (left) principally quasi-Baer ring. (2) � is a right (left) principally projective ring. 
 
Next we show that central ∗–reversible rings are closed under finite direct sums. 
 
2.6. Proposition: Let {�2}2∈4 be a class of rings for a finite index set 5. Then �2 is central ∗–reversible for all 6 ∈ 5 if and only if ⨁2∈4�2 is central ∗–reversible. 
 
Proof. The necessity follows from definitions. The sufficiency is clear since a subring of central ∗–reversible 
ring is central ∗–reversible. 
 
The following result is a direct consequence of Proposition 2.6. 
 
2.7. Corollary: Let � be a ∗–ring. Then .� and (1 − .)� are central ∗–reversible for some central 
idempotent . in � if and only if � is central ∗–reversible. 
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2.8. Remark: If � is ∗–reversible ring without unity, then � is ∗–symmetric. Suppose that ��� � 0, then ��� � 0. Hence �∗�� � �∗�∗� � (�∗�∗)∗�∗ � ���∗ � 0. Therefore � is ∗–symmetric. 
 
2.9. Lemma: Let � be ∗–reversible ring. If �� ∈ �(�) for � , � ∈ �, then �∗� ∈ �(�). 
 
Proof. Let � be ∗–reversible ring. Assume that �� ∈ �(�) for � , � ∈ �. Then there exists a positive integer 7 such that (��)8 � 0. By above remark, � is ∗–symmetric. It follows that  
 �∗�(��)8� � 0 ⟹ ���∗�(��)8 � 0.  ⟹ �∗��∗�(��)8 � 0.  ⟹ (�∗�) (��)8 � 0.  ⟹ (�∗�):(��)8: � 0. 
 
Using a similar method we get (�∗�)8��� � ��(�∗�)8� � �∗�(�∗�)8� � (�∗�)8 � 0. Therefore, �∗� ∈ �(�).  
 
2.10. Lemma: If � is central ∗–reversible ring, then it is abelian. 
 
Proof. Let . be an idempotent of �. For any / ∈ �, (/. − ./.)(. − 1) � 0 implies (. − 1)∗(/. − ./.) �./. − /. is central. Commuting ./. − /. by . we have ./. − /. � 0. Similarly for any / ∈ �, (. −1./−./.�0 implies ./.−./�0. Therefore � is abelian. 
 
Every abelian ring need not be central ∗–reversible for some involution ∗ as the following example shows. 
 
2.11. Example: Consider the ring  
 

� � ;<� �� => | � , � , � , = ∈ ℤ, � ≡ =(AB=2), � ≡ � ≡ 0(AB=2)C. Since 0 and the identity matrices are the 

only idempotents of �, � is abelian ring. Define an involution ∗ on � by <� �� =>∗ � <� �� =>. On the other 

hand, consider ! � <0 20 2> , " � <0 20 0> with !" � 0. But "∗! is not central for D � <0 31 0> ∈ �. Hence 

� is not central ∗–reversible. 
 
Recall that a ring � is called directly finite whenever �, � ∈ �, �� � 1 implies �� � 1. Then we have the 
following. 
 
2.12. Corollary: Every central ∗–reversible ring is directly finite. 
 
Recall that a ring � is called unit-central [11], if all unit elements are central in �. It is proven that every 
unit-central ring is abelian.  
 
2.13. Lemma: Let � be a unit central and ∗–reversible ring. If 5 is a nil ideal of �, then � 5⁄  is central ∗–
reversible. 
 
Proof. Let � , � ∈ � with (� + 5)(� + 5) � 0 + 5. Then �� + 5 � 5 and so �� ∈ 5. Therefore there exists a 
positive integer 7 such that (��)8 � 0. Hence (�∗�)8 � 0. It follows that �∗� ∈ �(�) ⊂ �(�) [11]. Thus /�∗� � �∗�/ for any / ∈ �. Therefore (�∗ + 5)(� + 5) is central in � 5⁄ . 
 
The given example proves that for if � is a ring with involution and an ideal 5, if � 5⁄  is central ∗–reversible, 
then � need not be central ∗–reversible. 
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2.14. Example: Let � � Hℤ ℤ0 ℤI, where ℤ the set of integer. Consider the ideal 5 � Hℤ ℤ0 0I of �. Then 

� 5⁄ � ;H0 00 �I + 5, � ∈ ℤC is central ∗–reversible. Let ∗ be an involution on � defined by H� �0 �I∗ �
H� −�0 � I. Let ! � H0 10 2I , " � H1 10 0I ∈ �, we have !" � 0 but "∗! � H1 −10 0 I H0 10 2I � H0 −10 0 I is not 

central in �. Therefore � is not central ∗–reversible.  
 
2.15. Lemma: Let R be a ∗–ring. Then R is domain if and only if it is a prime and central ∗–.  
 
Proof. Let a , b ∈ R with ab � 0. Then xab � 0 for any x ∈ R and so b∗xa is central. Then tb∗xab � 0 �b∗xatb for any t ∈ R. Since R is prime, b∗ � 0 or atb � 0 and so b � 0 or a � 0. The rest is clear. 
  
A ring R is called α–semicommutative if whenever ab � 0 for a, b ∈ R, aRα(b) � 0, where α: R → R is an 
endomorphism [12]. By replacing the endomorphism α by the involution ∗ which is an anti-automorphism of R of order two, we have a ring R with involution ∗ is said to be ∗–semicommutative, if whenever ab � 0 for a , b ∈ R, aRb∗ � 0 and is called central ∗-semicommutative if ab � 0 implies aRb∗ is central for a , b ∈ R. 
A ring R with involution ∗ is called ∗–rigid, if for any a ∈ R, aa∗ � 0, then a � 0 [8], while the ring R is said 
to be central ∗–rigid if for any a ∈ R, aa∗ � 0 implies a is central. 
 
2.16. Theorem: Let R be a right principally projective ring. Then the following are equivalent. 
 

1 – R is reduced 
2 – R is central ∗-rigid. 
3 – R is central ∗–reversible.  
4 – R is central ∗-semicommutative. 
5 – R is abelian. 

 
Proof. Note first that if R is a right principally projective ring, then every idempotent is central. 
 (1) ⟹ (2) Let a ∈ R with aa∗ � 0. Then we have (a∗ra) � 0 and so a∗ra � 0 since R is reduced. We have a ∈ rQ(a∗r) � eR for some e � e ∈ R. So a � ea and a∗re � 0. If r � 1, a∗e � 0 and ea∗ � 0. Since a∗ ∈ rQ(a), a∗ � ea∗ � 0. Hence a � 0 and so central.  
 (2) ⟹ (3) Let a , b ∈ R with ab � 0. Then b ∈ rQ(a) � eR for some e � e ∈ R. So b � eb and ae � 0. 
On the other hand b∗a∗ � 0. Then a∗ � ea∗ and b∗e � 0. We have b∗a(b∗a)∗ � (eb)∗aa∗b � b∗eaa∗b � 0. 
Since R is central ∗–rigid, b∗a is central. Hence R is central ∗–reversible. 
 (3) ⟹ (4) Let a , b ∈ R with ab � 0, then b∗a∗ � 0. For all x ∈ R, xb∗a∗ � 0. Since R is central ∗–
reversible, axb∗ is central. Hence R is central ∗–semicommutative. 
 (4) ⟹ (5)and (5) ⟹ (1) Clear. 
 
2.17. Corollary [13, Corollary 2.21]: Let R be a ring. Then the following are equivalent. 
 

1 – R is central reduced. 
2 – R is abelian and for any idempotent ∈ R , eR and (1 − e)R are central reduced.  

  
2.18. Lemma: Let R be a ring with involution ∗. If R is central ∗–reversible, then R is central reduced.  
 
Proof. Let � be central ∗–reversible ring. Then .� and (1 − .)� are central ∗–reversible by corollary 2.7 
and right principally projective rings. By theorem 2.16, .� and (1 − .)� are reduced. By corollary 2.17, � 
is central reduced. 
 
Recall that the ring � is called 2-primal if �(�) � �(�). 
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2.19. Theorem: If � is a central ∗–reversible ring, then it is 2-primal. The converse holds for rings with 
semiproper involution ∗. 
 
Proof. Let � be a central ∗–reversible ring. We have �(�) ⊆ �(�). To prove the converse , let � ∈ �(�) 
with �8 � 0 for some positive integer 7. Suppose that � ∉ � for a prime ideal �. Since � is central reduced, � is central. For any /8�, /8 , … . , / , /� ∈ �, we have �/8��/8 � … �/ �/�� � /8�/8 … / /��8 � 0. 
For all prime ideals W , we have ��(�/8 � … �/ �/��) ⊆ W . Since � ∉ �, �/8 � … �/ �/�� ∈ W  for all 
prime ideals W  and /8 , … . , / , /� ∈ � . Hence ��(�/8:� … �/ �/��) ⊆ W  for all prime ideals W  and /8:, … . , / , /� ∈ �. Using a similar reasoning, since � ∉ �, ��(�/8X� … �/ �/��) ⊆ W for all prime ideals W  and for all /8X, … . , / , /� ∈ �  implies �/8X� … �/ �/�� ∈ W  for all prime ideals W  and for all /8X, … . , / , /� ∈ �. By going downward induction, we may reach ��� ⊆ W for all prime ideals W. Hence � ∈ W for all prime ideals W, a contradiction. Thus if � is nilpotent, then � ∈ �(�) and so �(�) ⊆ �(�). 
Conversely, let � be a 2-primal ring with semiproper involution ∗. Then �(�) � 0 and so �(�) � 0. Hence �  is reduced. Let �� � 0 . Then ���∗ � ��∗� � �∗��∗� � 0 . Then we have 
(�∗�)/(�∗�)� ��∗�/�∗��∗�/�∗� � 0. Since � is reduced, (�∗�)/(�∗�) � 0. We have �∗� � 0 and so �∗� is central. Hence � is central ∗–reversible. This completes the proof. 
 
A ring � with involution ∗ is said to be weakly ∗–reversible, if for all � , � , / ∈ � such that �� � 0, ��∗/� is 
a nil left ideal of �. 
 
2.20. Theorem: Let � be a ring with involution ∗. Consider the following conditions. 
 (1) � is ∗–reversible. (2) � is central ∗–reversible. (3) � is weakly ∗–reversible. 
 
Then (1) ⟹ (2) ⟹ (3). 
 
Proof. (1) ⟹ (2) Obvious. 
 (2) ⟹ (3) Let � , � ∈ � with �� � 0. Then for all Y ∈ �, Y�� � 0. Since � is central ∗–reversible, �∗Y� is 
central. Then we have /�/�∗Y�/ � 0 for all / , Y ∈ �. This implies that (�)(�∗Y�) � 0. Then (�)(�∗Y�) ⊆�(�). Since every central ∗–reversible is 2-primal, � ∈ �(�)  or �∗Y� ∈ �(�) . If � ∈ �(�) , then there 
exists a positive integer 7 such that �8 � 0. Then we have (/�∗Y�)8 � /(�∗)8Y�Y� … / � 0 and so ��∗Y� 
is a nil left ideal of �. If �∗Y� ∈ �(�), then there exists a positive intger A such that (�∗Y�)Z � 0. Then we 
have (/�∗Y�)Z � /(�∗Y�)Z … / � 0  and so ��∗Y�  is a nil left ideal of � . Therefore �  is weakly ∗ –
reversible. 
 
2.21. Lemma: Let � be weakly ∗-reversible ring. If � 5⁄  is a central ∗–reversible ring with a reduced ideal 5, 
then � is central ∗–reversible. 
 
Proof. Let � , � ∈ � with �� � 0. Since � is weakly ∗-reversible, ��∗/� is nil left ideal of �. Then 5�∗/� ⊆��∗/� (5 ⊆ �) . If / � 1 , then 5�∗� ⊆ ��∗/� ∈ �(�) . So there exists a positive integer 7  such that (5�∗�)8 � 0. Since 5 is reduced, 5�∗� � 0. Now, let � 5⁄  be central ∗–reversible ring. Let � , � ∈ � with �� � 0. Since (� + 5)(� + 5) � 0, (�∗ + 5)(� + 5) is central in � 5⁄ . It follows that �∗�/ − /�∗� ∈ 5 for any / ∈ �. Then 5(�∗�/ − /�∗�) � 0. Hence we have (�∗�/ − /�∗�) � 0. Since 5 is reduced, �∗�/ � /�∗� 
and so � is central ∗–reversible.  
 
Let � be a ring and [ an (�, �)–bimodule. Recall that the trivial extension of � by [ is defined to be ring �(�, [) � �⨁ [  with the usual addition and the multiplication (/�, A�)(/ , A ) � (/�/ , /�A + A�/ ) . 

This ring is isomorphic to the ring ;H/ A0 / I : / ∈ �, A ∈ [C with the usual matrix operations and isomorphic 

to �
�� (� )⁄ , where (� ) is the ideal generated by � . An induced involution on the trivial extension 

�(�, �) of � with involution ∗ is given by </ \0 />∗ � </∗ \∗
0 /∗> [8]. 
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2.22. Proposition: If � with involution ∗ is reduced and central ∗–reversible ring, then �(�, �) is central ∗–
reversible. 
 

Proof. Let H� �0 �I , H� =0 �I ∈ �(�, �) with H� �0 �I H� =0 �I � 0. Then  

 �� � 0  
 �= + �� � 0 ⟹ �= � −��  

 
Since � is central ∗–reversible, �∗� is central. Hence (�=): � (−��)(�=)(−��) � �(��)=�� � �=���� �
0. Since � is reduced, �= � −�� � 0 which implies =∗�, �∗� are central in �. Therefore H�∗ =∗

0 �∗ I H� �0 �I ∈
�(�(� , �)).  
 
Let � denote a multiplicatively closed subset of a ring � consisting of central regular elements. Let ��� be 
the localization of � at �. Define an involution ∗ on � by (\�/)∗ � \�/∗. Then we have the following 
proposition.  
 
2.23. Proposition: A ring �  with involution ∗  is central ∗–reversible if and only if ���  is central ∗–
reversible. 
 
Proof. Let �  be a central ∗ –reversible ring and � /⁄  , � \⁄ ∈ ���  where, � ∈ �  , / , \ ∈ �  with (� /⁄ )(� \⁄ ) � 0 . Since (� /⁄ )(� \⁄ ) � �� /\⁄ � 0  we have �� � 0 . By hypothesis �∗�  is central, so (�∗ \⁄ )(� /⁄ )(� ]⁄ ) � �∗�� \/]⁄ � ��∗� ]\/⁄ � (� ]⁄ )(�∗ \⁄ )(� /)⁄  for every � ]⁄ ∈ ��� , where � ∈ �  and ] ∈ �. Therefore ��� is central ∗–reversible. Conversely, assume that ��� is a central ∗–reversible ring. 
Since � may be embedded in ���, the rest is clear. 
 
2.24. Corollary: Let �  be ∗-ring. Then �
�� is central ∗-reversible if and only if �
�, ��� is central ∗–
reversible. 
 
Proof. Consider the subset � � {1 , � , � , �:, … } of �
��  consisting of central regular elements. Then it 
follows from Proposition 2.23. 
 
Let � be a ∗-ring and ̂ (�) � ∑ �2�2, `(�) � ∑ �a� a ∈ �
��Zab#82b# . Rege and Chhawchharia [14] introduce 
the notion of an Armendariz ring, that is, a ring � is called Armendariz, ̂ (�)`(�) � 0 implies �2�a � 0 for 
all 6 and c. Define an involution ∗ by ̂ ∗(�) � ∑ �2∗�282b# , for every polynomial ̂(�) ∈ �
�� [7].  
 
2.25. Theorem: Let �  with involution ∗  be an Armendariz ring. Then the following statements are 
equivalent. 
 

1 – � is central ∗–reversible. 
2 - �
�� is central ∗–reversible. 
3 - �
�, ��� is central ∗–reversible. 

 
Proof. (1) ⟹ (2)  Let ^(�) � ∑ �2�2, `(�) � ∑ �a� a ∈ �
��Zab#82b#  with ^(�)`(�) � 0 . Since �  is 
Armendariz, �2�a � 0 for each 6 and c. But � is central ∗–reversible so �a∗�2  is central for each 6 and c. It 
follows that ̀ ∗(�)^(�) is central in �
��. Therefore �
�� is central ∗–reversible. 
 (2) ⟹ (1)  Let �2 , �a ∈ �  with �2�a � 0  for each 6  and c . Then ̂ (�)`(�) � 0  where ̂ (�), `(�) ∈ �
�� . 
Since �
��  is central ∗–reversible, ̀ ∗(�)^(�) ∈ �(�
��)  and so �a∗�2 ∈ �(�) . Therefore �  is central ∗–
reversible.  
 (2) ⟺ (3) It follows from Corollary 2.24. 



 
 
 

Fakieh and Al-Juhani; BJMCS, 22(1): 1-9, 2017; Article no.BJMCS.32407 
 
 
 

8 
 
 

A ring � is called nil-Armendariz [15] if whenever two polynomials ^(�), `(�) ∈ �
�� satisfy ̂ (�)`(�) ∈76e(�)
�� then �� ∈ 76e(�) for all � ∈ �B.^(^(�)) and � ∈ �B.^(`(�)). 
 
2.26. Proposition: If � with involution ∗ is central ∗–reversible, then � is nil-Armendariz. 
 
Proof. If � is central ∗–reversible, then it is 2-primal by theorem 2.19 and so �(�) is an ideal of �. [15, 
Proposition 2.1] states that in a ring in which the set of all nilpotent elements forms an ideal, then the ring is 
nil-Armendariz. 
 
The Dorroh extension f(�, �) � {(/ , 7): / ∈ �, 7 ∈ �}  of a ring �  is a ring with operations (/�, 7�) +(/ , 7 ) � (/� + / , 7� + 7 )  and (/�, 7�)(/ , 7 ) � (/�/ + 7�/ + 7 /�, 7�7 ) . Obviously �  is isomorphic 
to the ideal {(/, 0): / ∈ �} of f(�, �). If the algebra � adheres to an involution ∗, then an induced involution ∗g on f is (/, 7)∗h � (/∗ , 7) for every (/ , 7) ∈ f [7]. Then we have the following. 
 
2.27. Proposition: A ring � with involution ∗ is central ∗–reversible if and only if the Dorroh extension f(�, �) of � is central ∗–reversible. 
 
Proof. The sufficiency is clear. For necessity, let (/�, 7�) , (/ , 7 ) ∈ f(�, �) with (/�, 7�)(/ , 7 ) � 0. Then 7�7 � 0 . Assume that 7� � 0 . Since �  is central ∗ -reversible, (/ ∗ + 7 )/�  is central in �  and so (/ ∗, 7 )(/�, 7�) is central in f(� , �). Hence f(� , �) is central ∗–reversible. A similar proof may be given 
for 7 � 0. 
 

3 Conclusion 
 
In this paper the study introduced central ∗-reversible ring (Definition 2.1), which generalized the concept of ∗-reversible ring, published in [7]. Moreover it established a number of properties of this generalization. The 
connection between central ∗-reversible and other rings was also investigated (Theorem 2.16). Finally it 
proved that if R is Armendariz ring then, R is central ∗-reversible if and only if R[x] is central ∗-reversible if 
and only if R [x, x-1] is central ∗-reversible (Theorem 2.25). 
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