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Abstract
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1 Introduction and Preliminaries

Let A be the class of analytic functionsf(z) in the open unit disk U = {z ∈ C : |z| < 1} of the form

f(z) = z + a2z
2 + a3z

3 + · · ·+ anz
n + · · · = z +

∞∑
n=2

anz
n, an ∈ C. (1.1)

Also, by S we will denote the family of all functions in A which are univalent in U . Let T denote
the subclass of all functions f(z) in A of the form

f(z) = z − a2z
2 − a3z

3 − · · · − anz
n − · · · = z −

∞∑
n=2

anz
n, an ≥ 0. (1.2)

Some of the important and well-investigated subclasses of the univalent functions class S include
the classes S∗(α) and C(α), respectively, starlike and convex of order α (α ∈ [0, 1)) in the open unit
disk U .

By definition, we have (see for details, [1], [2], [3] also [4])

S∗(α) =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
, α ∈ [0, 1) ,

and

C(α) =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
, α ∈ [0, 1) .

Note that, we will use TS∗(α) = S∗(α) ∩ T and TC(α) = C(α) ∩ T.

Interesting generalization of the functions classes S∗(α) and C(α), are classes S∗(α, β) and C(α, β),
which defined by

S∗(α, β) =

{
f ∈ A : Re

(
zf ′(z)

βzf ′(z) + (1− β)f(z)

)
> α, z ∈ U

}
, α, β ∈ [0, 1)

and

C(α, β) =

{
f ∈ A : Re

(
f ′(z) + zf ′′(z)

f ′(z) + βzf ′′(z)

)
> α, z ∈ U

}
, α, β ∈ [0, 1) ,

respectively.

We will denote TS∗(α, β) = S∗(α, β) ∩ T and TC(α, β) = C(α, β) ∩ T .

These classes TS∗(α, β) and TC(α, β) were extensively studied by Altintaş and Owa [5], Porwal
[6], and certain conditions for hypergeometric functions and generalized Bessel functions for these
classes were studied Moustafa [7] and Porwal and Dixit [8].

The coefficient problems for the subclasses TS∗(α, β) and TC(α, β) were investigated by Altıntaş
and Owa in [5]. They, also investigated properties like starlike and convexity of these classes.

Also, the coefficient problems, representation formula and distortion theorems for these subclasses
S∗(α, β, µ) and C∗(α, β, µ) of the analytic functions were given by Owa and Aouf in [9].

In [10], results of Silverman were extended by Kadioğlu.

Inspired by the studies mentioned above, we define a unification of the functions classes S∗(α, β)
and C(α, β) as follows.
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Definition 1.1. A function f ∈ A given by (1.1) is said to be in the class S∗C(α, β; γ), α, β ∈
[0, 1) , γ ∈ [0, 1] if the following condition is satisfied

Re

{
zf ′(z) + γz2f ′′(z)

γz (f ′(z) + βzf ′′(z)) + (1− γ) (βzf ′(z) + (1− β)f(z))

}
> α, z ∈ U.

Also, we will denote TS∗C(α, β; γ) = S∗C(α, β; γ) ∩ T.

In special case, we have:

S∗C(α, β; 0) = S∗(α, β); S∗C(α, β; 1) = C(α, β); S∗C(α, 0; 0) = S∗(α);
S∗C(α, 0; 1) = C(α); TS∗C(α, β; 0) = TS∗(α, β); TS∗C(α, β; 1) = TC(α, β);
TS∗C(α, 0; 0) = TS∗(α);TS∗C(α, 0; 1) = TC(α).

Suitably specializing the parameters we note that

1) S∗C(α, 0; 0) = S∗(α) [11]

2) S∗C(α, 0; 1) = C(α) [11]

3) TS∗C(α, β; 0) = TS∗(α, β) [12], [13], [14] and [6]

4) TS∗C(α, 0; 0) = TS∗(α) [11]

5) TS∗C(α, β; 1) = TC(α, β) [5] and [6]

6) TS∗C(α, 0; 1) = TC(α) [11]

In this paper, we introduce and investigate two new subclasses S∗C(α, β; γ) and TS∗C(α, β; γ),
α, β ∈ [0, 1), γ ∈ [0, 1]of the analytic functions in the open unit disk. The object of the present
paper is to derive characteristic properties of the functions belonging to these subclasses. Also, we
examine some analytic functions which involve Gamma function, and provide conditions for these
functions to be in these subclasses.

2 Conditions for the Subclasses S∗C(α, β; γ) and TS∗C(α, β; γ)

In this section, we will examine some characteristic properties of the subclasses S∗C(α, β; γ) and
TS∗C(α, β; γ) of analytic functions in the open unit disk.
A sufficient condition for the functions in the subclass S∗C(α, β; γ) is given by the following theorem.

Theorem 2.1. Let f ∈ A. Then, the function f(z) belongs to the class S∗C(α, β; γ), α, β ∈
[0, 1) , γ ∈ [0, 1] if the following condition is satisfied

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ) |an| ≤ 1− α. (2.1)

The result is sharp for the functions

fn(z) = z +
1− α

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
zn, z ∈ U, n = 2, 3, ... . (2.2)

Proof. From the Definition 1.1, a functionf ∈ S∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1] if and only if

Re

{
zf ′(z) + γz2f ′′(z)

γz (f ′(z) + βzf ′′(z)) + (1− γ) (βzf ′(z) + (1− β)f(z))

}
> α. (2.3)

We can easily show that condition (2.3) holds true if∣∣∣∣ zf ′(z) + γz2f ′′(z)

γz (f ′(z) + βzf ′′(z)) + (1− γ) (βzf ′(z) + (1− β)f(z))
− 1

∣∣∣∣ ≤ 1− α.
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Now, let us show that this condition is satisfied under the hypothesis (2.1) of the theorem. By
simple computation, we write∣∣∣∣ zf ′(z) + γz2f ′′(z)

γz (f ′(z) + βzf ′′(z)) + (1− γ) (βzf ′(z) + (1− β)f(z))
− 1

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

n=2

(1 + (n− 1)γ) (n− 1)(1− β)anz
n

z +
∞∑

n=2

(1 + (n− 1)γ) (1 + (n− 1)β) anzn

∣∣∣∣∣∣∣∣ ≤
∞∑

n=2

(1 + (n− 1)γ) (n− 1)(1− β) |an|

1−
∞∑

n=2

(1 + (n− 1)γ) (1 + (n− 1)β) |an|
.

Last expression of the above inequality is bounded by 1− α if

∞∑
n=2

(1 + (n− 1)γ) (n− 1)(1− β) |an| ≤ (1− α)

{
1−

∞∑
n=2

(1 + (n− 1)γ) (1 + (n− 1)β) |an|

}
,

which is equivalent to

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ) |an| ≤ 1− α.

Also, we can easily see that the equality in (2.1) is satisfied by the functions given by (2.2).

Thus, the proof of Theorem 2.1 is completed.

Setting γ = 0 and γ = 1 in Theorem 2.1, we can readily deduce the following results, respectively.

Corollary 2.2. The function f(z) definition by (1.1) belongs to the class S∗(α, β), α, β ∈ [0, 1) if
the following condition is satisfied

∞∑
n=2

(n− α− (n− 1)αβ) |an| ≤ 1− α.

The result is sharp for the functions

fn(z) = z +
1− α

n− α− (n− 1)αβ
zn, z ∈ U, n = 2, 3, ... .

Corollary 2.3. The function f(z) definition by (1.1) belongs to the class C(α, β), α, β ∈ [0, 1) if
the following condition is satisfied

∞∑
n=2

n (n− α− (n− 1)αβ) |an| ≤ 1− α.

The result is sharp for the functions

fn(z) = z +
1− α

n (n− α− (n− 1)αβ)
zn, z ∈ U, n = 2, 3, ... .

Corollary 2.4. The function f(z) definition by (1.1) belongs to the class S∗(α), α ∈ [0, 1) if the
following condition is satisfied

∞∑
n=2

(n− α) |an| ≤ 1− α.

The result is sharp for the functions

fn(z) = z +
1− α

n− α
zn, z ∈ U, n = 2, 3, ... .
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Corollary 2.5. The function f(z) definition by (1.1) belongs to the class C(α), α ∈ [0, 1) if the
following condition is satisfied

∞∑
n=2

n (n− α) |an| ≤ 1− α.

The result is sharp for the functions

fn(z) = z +
1− α

n (n− α)
zn, z ∈ U, n = 2, 3, ... .

Remark 2.1. Further consequences of the properties given by Corollary 2.4 and Corollary 2.5 can be
obtained for each of the classes studied by earlier researches, by specializing the various parameters
involved. Many of these consequences were proved by earlier researches on the subject (cf., e.g.,
[11]).

For the function in the class TS∗C(α, β; γ), the converse of Theorem 2.1 is also true.

Theorem 2.6. Let f ∈ T . Then, the function f(z) belongs to the class TS∗C(α, β; γ), α, β ∈
[0, 1) , γ ∈ [0, 1] if and only if

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ)an ≤ 1− α. (2.4)

The result is sharp for the functions

fn(z) = z − 1− α

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
zn, z ∈ U, n = 2, 3, ... . (2.5)

Proof. The proof of the sufficiency of the theorem can be proved similarly to the proof of Theorem
2.1.

We will prove only the necessity of the theorem.

Assume that f ∈ TS∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1]; that is,

Re

{
zf ′(z) + γz2f ′′(z)

γz (f ′(z) + βzf ′′(z)) + (1− γ) (βzf ′(z) + (1− β)f(z))

}
> α, z ∈ U.

By simple computation, we write

Re

{
zf ′(z) + γz2f ′′(z)

γz (f ′(z) + βzf ′′(z)) + (1− γ) (βzf ′(z) + (1− β)f(z))

}

= Re


z −

∞∑
n=2

n (1 + (n− 1)γ) anz
n

z −
∞∑

n=2

(1 + (n− 1)γ) (1 + (n− 1)β) anzn

 > α.

The last expression in the brackets of the above inequality is real if choose z real. Hence, from the
previous inequality letting z → 1 through real values, we obtain

1−
∞∑

n=2

n (1 + (n− 1)γ) an ≥ α

{
1−

∞∑
n=2

(1 + (n− 1)γ) (1 + (n− 1)β) an

}
.

This follows
∞∑

n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ)an ≤ 1− α,

5
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which is the same as the condition (2.4).

Also, it is clear that the equality in (2.4) is satisfied by the functions given by (2.5).

Thus, the proof of Theorem 2.6 is completed.

Taking γ = 0 and γ = 1 in Theorem 2.6, we can readily deduce the following results, respectively.

Corollary 2.7. The function f(z) definition by (1.2) belongs to the class TS∗(α, β), α, β ∈ [0, 1)
if and only if

∞∑
n=2

(n− α− (n− 1)αβ)an ≤ 1− α.

The result is sharp for the functions

fn(z) = z − 1− α

n− α− (n− 1)αβ
zn, z ∈ U, n = 2, 3, ... .

Corollary 2.8. The function definition by (1.2) belongs to the class TC(α, β), α, β ∈ [0, 1) if and
only if

∞∑
n=2

n (n− α− (n− 1)αβ)an ≤ 1− α.

The result is sharp for the functions

fn(z) = z − 1− α

n (n− α− (n− 1)αβ)
zn, z ∈ U, n = 2, 3, ... .

Setting β = 0 in Corollary 2.7 and 2.8, we can readily deduce the following results, respectively.

Corollary 2.9. The function f(z) definition by (1.2) belongs to the class TS∗(α), α ∈ [0, 1) if and
only if

∞∑
n=2

(n− α)an ≤ 1− α.

The result is sharp for the functions

fn(z) = z − 1− α

n− α
zn, z ∈ U, n = 2, 3, ... .

Corollary 2.10. The function f(z) definition by (1.2) belongs to the class TC(α), α ∈ [0, 1) if and
only if

∞∑
n=2

n (n− α)an ≤ 1− α.

The result is sharp for the functions

fn(z) = z − 1− α

n (n− α)
zn, z ∈ U, n = 2, 3, ... .

Remark 2.2. The results obtained by Corollary 2.9 and Corollary 2.10 would reduce to known
results in [5].

Remark 2.3. Further consequences of the properties given by Corollary 2.9 and Corollary 2.10
can be obtained for each of the classes studied by earlier researches, by specializing the various
parameters involved. Many of these consequences were proved by earlier researches on the subject
(cf., e.g., [11]).

From Theorem 2.6, we obtain the following theorem on the coefficient bound estimates.
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Theorem 2.11. Let the function definition by (1.2) f ∈ TS∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1].
Then

an ≤ 1− α

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
, n = 2, 3, ... .

Corollary 2.12. Let the function definition by (1.2) f ∈ TS∗(α, β), α, β ∈ [0, 1). Then

an ≤ 1− α

n− α− (n− 1)αβ
, n = 2, 3, ... .

Corollary 2.13. Let the function definition by (1.2) f ∈ TC(α, β), α, β ∈ [0, 1). Then

an ≤ 1− α

n (n− α− (n− 1)αβ)
, n = 2, 3, ... .

Setting β = 0 in Corollary 2.12 and 2.13, we can readily deduce the following results, respectively.

Corollary 2.14. Let the function definition by (1.2) f ∈ TS∗(α), α ∈ [0, 1). Then

an ≤ 1− α

n− α
, n = 2, 3, ... .

Corollary 2.15. Let the function definition by (1.2) f ∈ TC(α), α ∈ [0, 1). Then

an ≤ 1− α

n (n− α)
, n = 2, 3, ... .

Remark 2.4. Further consequences on the coefficient bound estimates given by Corollary 2.14 and
Corollary 2.15 can be obtained for each of the classes studied by earlier researches, by specializing
the various parameters involved.

3 Conditions for the Analytic Functions Involving Gamma Function

In this section, we will examine geometric properties of analytic functions involving Gamma function.
For these functions, we give conditions to be in these classes S∗C(α, β; γ) and TS∗C(α, β; γ).
Let us define the function Fλ,µ : C → C by

Fλ,µ(z) = z +

∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

(n− 1)!
zn = z + (Wλ,µ(z)− z) e−1/µ, (3.1)

z ∈ U, λ > −1, µ > 0,

where Γ(µ) is Euler gamma function and Wλ,µ(z) is normalized Wright function (see, for details
[15]).

We define also the function

Gλ,µ(z) = 2z − Fλ,µ(z) = z −
∞∑

n=2

Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

(n− 1)!
zn, z ∈ U. (3.2)

It is clear that Fλ,µ ∈ A and Gλ,µ ∈ T , respectively.

We will give sufficient condition for the function Fλ,µ(z) defined by (3.1), belonging to the class
S∗C(α, β; γ), and necessary and sufficient condition for the function Gλ,µ(z) defined by (3.2),
belonging to the class TS∗C(α, β; γ), respectively.

7
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Theorem 3.1. Let λ ≥ 1, µ > 0.462 and the following condition is satisfied

{(1− αβ) γ + [1− αβ + (2− (1 + β)α) γ]µ}µ−2e1/µ ≤ 1− α. (3.3)

Then, the function Fλ,µ(z)defined by (3.1) is in the class S∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1].

Proof. Since Fλ,µ ∈ A and

Fλ,µ(z) = z +

∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

(n− 1)!
zn ,

in view of Theorem 2.1, it suffices show that

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

(n− 1)!
≤ 1− α. (3.4)

Let

L1(p;α, β; γ) =

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

(n− 1)!
.

Under hypothesis λ ≥ 1, the inequality Γ(n− 1 + µ) ≤ Γ(λ(n− 1) + µ), n ∈ N holds for µ > 0.462,
which is equivalent to

Γ(µ)

Γ(λ(n− 1) + µ)
≤ 1

(µ)n−1

, n ∈ N (3.5)

where (µ)n = Γ(n+µ)/Γ(µ) = µ(µ+1) · · · (µ+n−1), (µ)0 = 1 is Pochhammer (or Appell) symbol,
defined in terms of Euler gamma function.

Aslo, the inequality
(µ)n−1 = µ(µ+ 1) · · · (µ+ n− 2) ≥ µn−1, n ∈ N (3.6)

is true, which is equivalent to 1/(µ)n−1 ≤ 1/µn−1, n ∈ N.
Setting

(1 + (n− 1)γ) (n− α− (n− 1)αβ)

= (n− 2)(n− 1) (1− αβ) γ + (n− 1) (1− αβ + (2− (1 + β)α) γ) + 1− α

and using (3.5), (3.6), we can easily write that

L1(p;α, β; γ) ≤
∞∑

n=2

{(n− 2)(n− 1) (1− αβ) γ + (n− 1) (1− αβ + (2− (1 + β)α) γ) + 1− α} e−1/µ

µn−1(n− 1)!

=

∞∑
n=3

(1− αβ) γ

(n− 3)!

e−1/µ

µn−1
+

∞∑
n=2

1− αβ + (2− (1 + β)α) γ

(n− 2)!

e−1/µ

µn−1
+

∞∑
n=2

(1− α)e−1/µ

µn−1(n− 1)!

Thus,

L1(p;α, β; γ) ≤
(1− αβ) γ

µ2
+

1− αβ + (2− (1 + β)α) γ

µ
+ (1− α)

(
1− e−1/µ

)
.

From the last inequality we easily see that the inequality (3.4) is true if last expression is bounded
by 1− α, which is equivalent to (3.3).

Thus, the proof of Theorem 3.1 is completed.

Taking γ = 0 and γ = 1 in Theorem 3.1, we arrive at the following results.

8
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Corollary 3.2. Let λ ≥ 1, µ > 0.462 and the following condition is satisfied

(1− αβ)µ−1e1/µ ≤ 1− α.

Then, the function Fλ,µ(z) defined by (3.1) is in the class S∗(α, β), α, β ∈ [0, 1).

Corollary 3.3. Let λ ≥ 1, µ > 0.462 and the following condition is satisfied{
(1− αβ)µ−2 + (3− 2αβ − α)µ−1} e1/µ ≤ 1− α.

Then, the function Fλ,µ(z) defined by (3.1) is in the class C(α, β), α, β ∈ [0, 1).

Remark 3.1. Further consequences of the results given by Corollary 3.2 and Corollary 3.3 can be
obtained for each of the classes, by specializing the various parameters involved.

Theorem 3.4. Let λ ≥ 1, µ > 0.462, then the function Gλ,µ(z) defined by (3.2) belongs to the class
TS∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1] if

{(1− αβ) γ + [1− αβ + (2− (1 + β)α) γ]µ}µ−2e1/µ ≤ 1− α. (3.7)

Proof. The proof of Theorem 3.4 is same of the proof of Theorem 3.1. Therefore, the details of the
proof of Theorem 3.4 may be omitted.

Remark 3.2. Further consequences of the results given by Theorem 3.4 can be obtained for each of
the classes, by specializing the various parameters involved.

4 Integral Operators of the Functions Fλ,µ(z) and Gλ,µ(z)

In this section, we will examine some inclusion properties of integral operators associated with the
functions Fλ,µ(z) and Gλ,µ(z) as follows:

F̂λµ(z) =

z∫
0

Fλµ(t)

t
dt and Ĝλ,µ(z) =

z∫
0

Gλ,µ(t)

t
dt (4.1)

Theorem 4.1. Let λ ≥ 1, µ > 0.462 and the following condition is satisfied{
(1− αβ) γµ−1 + (1− β) (1− γ)α

(
1− e−1/µ

)}
e1/µ ≤ 1− α. (4.2)

Then, the function F̂λ,µ(z) defined by (4.1) is in the class S∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1].

Proof. Since

F̂λ,µ(z) = z +

∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

n!
zn, z ∈ U

according to Theorem 2.1, the function F̂λ,µ(z) belongs to the class S∗C(α, β; γ) if the following
condition is satisfied

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

n!
≤ 1− α. (4.3)

Let

L2(p;α, β; γ) =

∞∑
n=2

(1 + (n− 1)γ) (n− α− (n− 1)αβ)
Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

n!
.
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Setting

(1 + (n− 1)γ) (n− α− (n− 1)αβ)

= (n− 1)n (1− αβ) γ + n ((1− αβ)(1− γ) + (1− α)γ)− (1− β)(1− γ)α

and by simple computation, we obtain

L2(p;α, β; γ) =
∞∑

n=2

{(n− 1)n (1− αβ) γ + n(1− β)(1− γ)α

−(1− β)(1− γ)α+ n(1− α)} Γ(µ)

Γ(λ(n− 1) + µ)

e−1/µ

n!

=

∞∑
n=2

(1− αβ) γ

(n− 2)!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
+

∞∑
n=2

(1− β)(1− γ)α

(n− 1)!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
−

∞∑
n=2

(1− β)(1− γ)α

n!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
+

∞∑
n=2

1− α

(n− 1)!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
.

Thus,

L2(p;α, β; γ) ≤
∞∑

n=2

(1− αβ) γ

(n− 2)!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
+

∞∑
n=2

(1− β)(1− γ)α

(n− 1)!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
+

∞∑
n=2

1− α

(n− 1)!

Γ(µ)e−1/µ

Γ(λ(n− 1) + µ)
.

From (3.5) and (3.6), w have

L2(p;α, β; γ) ≤
∞∑

n=2

(1− αβ) γ

(n− 2)!

e−1/µ

µn−1
+

∞∑
n=2

(1− β)(1− γ)α

(n− 1)!

e−1/µ

µn−1
+

∞∑
n=2

1− α

(n− 1)!

e−1/µ

µn−1
=

(1− αβ) γ

µ
+ (1− β)(1− γ)α

(
1− e−1/µ

)
+ (1− α)

(
1− e−1/µ

)
.

Therefore, inequality (4.3) holds true if

(1− αβ) γ

µ
+ (1− β)(1− γ)α

(
1− e−1/µ

)
+ (1− α)

(
1− e−1/µ

)
≤ 1− α,

which is equivalent to (4.2).

Thus, the proof of Theorem 4.1 is completed.

Taking γ = 0 and γ = 1 in Theorem 4.1, we arrive at the following results.

Corollary 4.2. Let λ ≥ 1, µ > 0.462 and the following condition is satisfied

(1− β)α
(
e1/µ − 1

)
≤ 1− α.

Then, the function F̂λ,µ(z) defined by (4.1) is in the class S∗(α, β), α, β ∈ [0, 1).

Corollary 4.3. Let λ ≥ 1, µ > 0.462 and the following condition is satisfied

(1− αβ)µ−1e1/µ ≤ 1− α.

Then, the function F̂λ,µ(z) defined by (4.1) is in the class C(α, β), α, β ∈ [0, 1).

10
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Remark 4.1. Further consequences of the results given by Corollary 4.2 and Corollary 4.3 can be
obtained for each of the classes, by specializing the various parameters involved.

Theorem 4.4. Let λ ≥ 1, µ > 0.462, then the function Ĝλ,µ(z) defined by (4.1) belongs to the class
TS∗C(α, β; γ), α, β ∈ [0, 1) , γ ∈ [0, 1] if{

(1− αβ) γµ−1 + (1− β) (1− γ)α
(
1− e−1/µ

)}
e1/µ ≤ 1− α.

Proof. The proof of Theorem 4.4 is same of the proof of Theorem 4.1. Therefore, the details of the
proof of Theorem 4.4 may be omitted.

Taking γ = 0 and γ = 1 in Theorem 4.4, we can readily deduce the following results, respectively.

Corollary 4.5. Let λ ≥ 1, µ > 0.462, then the function Ĝλ,µ(z) defined by (4.1) belongs to the
class TS∗(α, β), α, β ∈ [0, 1) if

(1− β)α
(
e1/µ − 1

)
≤ 1− α.

Corollary 4.6. Let λ ≥ 1, µ > 0.462, then the function Ĝλ,µ(z) defined by (4.1) belongs to the
class TC(α, β), α, β ∈ [0, 1) if

(1− αβ)µ−1e1/µ ≤ 1− α.

Remark 4.2. Further consequences of the results given by Corollary 4.5 and Corollary 4.6 can be
obtained for each of the classes, by specializing the various parameters involved.

5 Discussion and Conclusions

In this paper, we defined two general subclasses of the analytic functions in the open unit disk in
the complex plane. We obtained coefficient estimates for these functions in these classes. From
these results, we can easily obtain results found in the literature (See [12], [5] and [11]).

Moreover, in this paper, analytic functions involving the Gamma function and their integral operators
were investigated. The sufficient and also necessary and sufficient conditions for these functions to
be in the classes S∗C(α, β; γ) and TS∗C(α, β; γ) are given.

Note

The short abstract of this manuscript was previously presented and published in ICANAS-2017,
Antalya, TURKEY (See [16]).
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