

British Journal of Mathematics & Computer Science 13(3): 1-9, 2016, Article no.BJMCS.19682

ISSN: 2231-0851

SCIENCEDOMAIN international www.sciencedomain.org

A Block Hybrid Implicit Algorithms for Solution of First Order Differential Equations

Y. A. Yahaya¹ and Asabe A. Tijjani^{2*}

¹Department of Mathematics and Statistics, Federal University of Technology, Minna, Nigeria. ²Department of Mathematics, Federal College of Education, Kontagora, Nigeria.

Article Information

DOI: 10.9734/BJMCS/2016/19682 <u>Editor(s):</u> (1) Qiankun Song, Department of Mathematics, Chongqing Jiaotong University, China. (2) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan University, USA. (1) Mfon O. Udo, Akwa Ibom State University, Nigeria. (2) Kwaku Darkwah, Kwame Nkrumah University of Science and Technology, Ghana. Complete Peer review History: <u>http://sciencedomain.org/review-history/12619</u>

Original Research Article

Received: 23 June 2015 Accepted: 17 October 2015 Published: 10 December 2015

Abstract

The paper consider the derivation of block hybrid algorithms , with k=4 for solution of first order ordinary differential equations, we adopted the method of interpolation and collocation of power series approximation to generate the continuous formula, which was evaluated at off grid and some grid points within the step length to generate the proposed block schemes. Also the schemes obtained were investigated and found to be consistent and zero stable. Finally the method is tested with numerical experiments to ascertain their level of accuracy.

Keywords: Block method; off- grid; higher order; consistent and zero stability.

1 Introduction

Many life and physical problems can be modeled into differential equation of the form

 $y' = f(x, y) \tag{1.0}$

The equation (1.0) occurs in field of sciences and engineering when we come across physical and natural phenomena which, when represented by mathematical models, happen to be differential equations. Some of these differential equations do not possess the closed form solution hence the numerical computation which is the area of mathematics and computer science that creates analyses and implements algorithms for numerical or approximate solutions is adopted to obtain the solution of (1.0). Many Researchers have worked extensively in this area such as [1,2,3,4,5,6,7], to mention but a few.

^{*}Corresponding author: E-mail: Yusuphyahaya@yahoo.com, ahmadtijjaniasabe@yahoo.com;

The aim of this research paper is to develop a higher order, zero stable and consistent block method at value k=4, and use it to solve some existing known problems to ascertain the level of their convergence.

Definition 1.0: One-Step Method (see [8]).

The method of constructing of an approximate solution using only one previous value is called one step method. The approach in this method enjoys the virtue that the step size (h) can be changed at every iteration, if desired, thus providing a mechanism for error control. A general expression of one-step method is

$$\sum_{j=0}^{1} \alpha_j y_{n+j} = h \sum_{j=0}^{1} \beta_j f_{n+j}$$
(1.1)

Definition 1.1: Linear Multi-step Methods

The general form of linear k –step method for first order ordinary differential equation is

$$\sum_{j=0}^{k} \alpha_j y_{n+j} = h \sum_{j=0}^{k} \beta_j f_{n+j}$$
(1.2)

where y_n is the numerical approximation to the exact solution at the point x_n and α_1 , $\alpha_2,...,\alpha_k$, β_1 , β_2 , ..., β_k are fixed numbers. The values of α_1 , α_2 ,..., α_k , β_1 , β_2 , ..., β_k are chosen to obtain the highest possible order of the method.

Definition 1.3: Zero Stability

The linear multistep method (1.2) is said to satisfy the root conditions if all the roots of the first characteristics polynomial have modulus less than or equal to unity and those of modulus unity are simple. The method (1.2) is said to be zero stable if it satisfies the root condition (see [6]).

Theorem 1.0: Fundamental theorem of Dahlquist

The necessary and sufficient conditions for a Linear Multistep Method (LMM) to be convergent are that it must be Consistent and Zero stable.

Theorem 1.1: Dalhquist order barrier for LMM

- a. A zero-stable, k-step LMM is maximum order P with p = (k + 1) when k is odd and k + 2, when k is even
- b. An explicit LMM cannot attain A-stability if the step number, k is such that k > 2
- c. The Order P of an A-stable LMM cannot exceed two. In fact, the Trapezoidal rule which is of Order p =2 with step number, k = 1 known for its A- stability has the smallest Error constant of $C = \frac{1}{12}$ (see [6]).

2 Methodology

We assumed a power series of the form

$$P(x) = \sum_{j=0}^{\infty} \alpha_j \, x^j$$

which is used as our basis to produce an approximate solution to (1.0) as

$$y(x) = \sum_{j=0}^{m+t-1} \alpha_j x^j$$
(2.1)

and

$$y'(x) = \sum_{j=0}^{m+t-1} j\alpha_j x^j = f(x, y)$$
(2.2)

where α_j are the parameters to be determined, and *m* and *t* are the points of collocation and interpolation respectively. This process leads to (m + t - 1) of non-linear system of equations with (m + t - 1) unknown coefficients, which are to be determined by the use of Maple 17 Mathematical software.

2.1 Hybrid block methods derived at k = 4

Using equations (2.1) and (2.2), m = 2, t = 7 our choice of degree of polynomial is (m + t - 1). Equations (2.1) is interpolated at the points $x = \left(x_{n+\frac{3}{2}}, x_{n+\frac{4}{3}}\right)$ and equation (2.2) is collocated at $x = \left(0, \frac{1}{2}, 1, 2, \frac{5}{2}, 3, 4\right)$ which gives the following non-linear system of equations of the form

$$\sum_{j=0}^{s+t-1} \alpha_j x_{n+i}^j = y_{n+i} \qquad i = \left(\frac{3}{2}, \frac{4}{3}\right)$$
(2.3)

$$\sum_{j=1}^{s+t-1} j\alpha_j x_{n+i}^j = f_{n+i} \qquad i = \left(0, \frac{1}{2}, 1, 2, \frac{5}{2}, 3, 4\right)$$
(2.4)

With the mathematical software, we obtain the continuous formulation of equations (2.3) and (2.4) of the form

$$y(x) = \alpha_{\frac{3}{2}} y_{n+\frac{3}{2}} + \alpha_{\frac{4}{2}} y_{n+\frac{4}{2}} + h \left[\beta_0 f_n + \beta_{\frac{1}{2}} f_{n+\frac{1}{2}} + \beta_1 f_{n+1} + \beta_2 f_{n+2} + \beta_{\frac{5}{2}} f_{n+\frac{5}{2}} + \beta_3 f_{n+3} + \beta_4 f_{n+4} \right]$$
(2.5)

After obtaining the values of α_j and β_i , $j = \left(\frac{3}{2}, \frac{4}{3}\right)$, $i = \left(0, \frac{1}{2}, 1, 2, \frac{5}{2}, 3, 4\right)$ in (2.5)

and we evaluated it at $x = x_{n+j} j = (0, \frac{1}{2}, 1, 2, \frac{5}{2}, 3, 4)$ and its first derivative also evaluated at $x = x_{n+j} j = \frac{3}{2}$, which gives the following set of discrete schemes to form our block hybrid implicit method.

$$\begin{split} y_n &= \frac{61210624}{21635123} y_{n+\frac{3}{2}} + \frac{82845747}{21635123} y_{n+\frac{4}{3}} - \frac{15939762}{108175615} hf_n - \frac{579846144}{757229305} hf_{n+\frac{1}{2}} \\ &- \frac{1905728}{21635123} hf_{n+1} \end{split}$$

$$\begin{split} + \frac{44498675}{2336593284} hf_{n+\frac{5}{2}} - \frac{5404525}{129810738} hf_{n+2} - \frac{2065585}{519242952} hf_{n+3} + \frac{6852275}{65424611952} hf_{n+4} \\ y_{n+1} &= -\frac{22299520}{21635123} y_{n+\frac{3}{2}} + \frac{43934643}{21635123} y_{n+\frac{4}{3}} - \frac{14584801}{15577288560} hf_n + \frac{15681458}{1363012749} hf_{n+\frac{1}{2}} \\ &- \frac{4599823229}{23365932840} hf_{n+1} \\ \hline - \frac{7040042}{584148321} hf_{n+\frac{5}{2}} + \frac{134830361}{3894322140} hf_{n+2} + \frac{17326847}{7788644280} hf_{n+3} - \frac{17027791}{327123059760} hf_{n+4} \\ y_{n+2} &= \frac{59721728}{21635123} y_{n+\frac{3}{2}} - \frac{3086605}{21635123} y_{n+\frac{4}{3}} - \frac{921571}{649053690} hf_n + \frac{6477344}{454337583} hf_{n+\frac{1}{2}} \\ &- \frac{234282518}{2920741605} hf_{n+1} \\ - \frac{130058336}{2920741605} hf_{n+\frac{5}{2}} + \frac{101249168}{324526845} hf_{n+2} + \frac{2219618}{324526845} hf_{n+3} - \frac{324526845}{40890382470} hf_{n+4} \\ y_{n+\frac{5}{2}} &= \frac{47319251}{21635123} y_{n+\frac{3}{2}} - \frac{25684128}{21635123} y_{n+\frac{4}{3}} - \frac{4297153}{15577288560} hf_n + \frac{14969563}{3894322140} hf_{n+\frac{1}{2}} \\ &- \frac{154194523}{4673186568} hf_{n+1} \\ + \frac{2184623651}{11682966420} hf_{n+\frac{5}{2}} + \frac{506645545}{77866428} hf_{n+2} - \frac{46505851}{7788644280} hf_{n+3} + \frac{517867}{9346373136} hf_{n+4} \\ y_{n+3} &= \frac{67280000}{21635123} y_{n+\frac{5}{2}} - \frac{45614877}{21635123} y_{n+\frac{4}{3}} - \frac{940125}{346161968} hf_n + \frac{3772770}{151445861} hf_{n+\frac{1}{2}} \\ &- \frac{20883875}{173080984} hf_{n+1} \\ + \frac{13849250}{21635123} hf_{n+\frac{5}{2}} + \frac{37619625}{86540492} hf_{n+2} + \frac{20257960}{194716107} hf_n - \frac{1160673280}{1363012749} hf_{n+\frac{1}{2}} \\ &+ \frac{1906794880}{584148321} hf_{n+1} \\ - \frac{2493900800}{584148321} hf_{n+\frac{5}{2}} + \frac{1225675360}{194716107} hf_{n+\frac{3}{2}} + \frac{20257960}{194716107} hf_{n+3} + \frac{995496640}{1363012749} hf_{n+\frac{4}{2}} \\ &= 266203350hf_n + 23223646880hf_{n+\frac{1}{2}} - 13917147720hf_{n+1} \\ - 790091366400y_{n+\frac{3}{2}} + 790091366400y_{n+\frac{4}{2}} \\ &= 266203350hf_{n+2} + 17913605hf_{n+2} + 1467011072hf_{n+3} - 141948042003hf_{n+4} \\ - 791479584hf_{n+5/2} + 17913605hf_{n+2} + 1467011072hf_{n+3} - 141948042003hf_{n+4} \\ - 791479584hf$$

Equations (2.6) are of uniform order 8, with error constant as follows

[1369559	148732265	948754903	52744349	100242059
81780764940 ,	50246101979136	' 807526638950400 '	323010655580160	39254767171200
58380475	88610933	⁷ [247098623		
8374350329856	22080865338'	648		

4

3 Block Analysis of the Methods

The method in (2.5) is arranged in matrix form as:

ſ		0	0	82845747	61210624	0	0	0	0	1												
			0	21635123 20785248	21635123 849875	0	0	0	0													
		1	0	21635123	21635123	0	0	0	0		$y_{n+\frac{1}{2}}$	Г	0	0	0	0	0	0	0	-1	$y_{n-\frac{7}{2}}$	
		0	1	21635123	21635123	0	0	0	0		y_{n+1} y_{n+4}		0	0	0	0	0	0	0	0	y_{n-3} y_{n-8}	
		0	0	38086605	$-\frac{59721728}{21635123}$	1	0	0	0		$y_{n+\frac{3}{2}}^{3}$	_	0	0	0	0	0	0	0	0	$y_{n-\frac{5}{2}}^{n-\frac{3}{2}}$	
		0	0	25684128	47319251	0	1	0	0		y_{n+2}		0	0	0	0	0	0	0	0	y_{n-2}	
		Ŭ	U	21635123 45644877	21635123 67280000	0	1	0	0		$y_{n+\frac{5}{2}}$ y_{n+2}		0	0	0	0	0	0	0	0	$y_{n-\frac{3}{2}}$	
		0	0	21635123	21635123	0	0	1	0		$\begin{bmatrix} y_{n+3} \\ y_{n+4} \end{bmatrix}$	L	0	0	0	0	0	0	0	0	$\begin{bmatrix} y_n - 1 \\ y_n \end{bmatrix}$	
	()	0	<u>_656154675</u> 21635123	634519552	0	0	0	1													
L	0	0	7	90091366400	-790091366	400	0	0	0	0												
	Г		579	846144 19	05728	_		4	6561	20	10	3137	28		21	6979	92		8	1758	3	1
		_	757	229305 - 21	635123 0	0		21	16351	123	- 108	81756	515		108	175	615	-	151	4458	361	
		-	33 18'	$\frac{4507225}{17350332}$ - $\frac{2}{4507225}$	1673186568	0	0	$-\frac{5}{12}$	4045 9810	25 738	2336	19867	75 284	-	20	6558 2420	85	65	6852	2275	F 2	
		_1	10	31458 459	99823229	0	1	.348	3036	1	704	10042	204	17	7326	5847	552	05	1702	2779	1	
		13	3630 64)12749 233 177344 23	65932840 34825218	0	3	8943	32214	40 8	5841	4832	21	778	3864	4428	0	32	7123	8059	760	
+	-		45/	$\frac{1}{1337583} - \frac{2}{29}$	$\frac{0023210}{00741605}$ 0	0		2453	2684	 5	- 29207	74160	0	32	4524	5845		408	9030	2247	_	
			14	969563 1	54194523	0	0 5	5066	4554	15	21846	2365	1	52-	465	058	51	400	517	B67	0	
		3	389 3772	4322140 4 2770 2088	673186568 83875		37	7788 6196	86442 525	28	116829 13849	96642 9250	20		788 887	644 635	280	93	463 16	7313 3862	6 5	
	1	15 16	5144 0673	15861 - 1730 3280 190679	180984 4880	J	86	5404 1225	492 56753	360	21635 249	5123 9390	080	0 17	308 5	0984 391	- 1 9680	- · 00	2423	3133' 9954	776 96640	
	23	.363 223	3012 3646	2749 584148 5880 -13917	0 3321 147720 0	0	17	194 7913	7161	07		4148 9584	321	– l 14	- 1 670	947	161 72	07	-141	4089 1948	038247	
			ſ	0 0 0 0	0 0 0		159	397	62]												
_		_		0 0 0 0	0 0 0	4	4782	287	5													
	<i>J</i> _{<i>n</i>+}	1 2		0 0 0 0	0 0 0	10	384	859	004	$\ \mathcal{I} \ $	$n-\frac{7}{2}$											
	f_{n+1}	1	0	0 0 0	0 0 0 -		145	848	01	$\frac{1}{2}$	n-3											
) _{n+}	3			0 0 -	15	92 92	288 157	856L 1	<u>יו</u> ן׳	$n-\frac{6}{3}$											
	J _{n+}	3 2	+	0 0 0 0	0 0 0	$\overline{6}$	5490)53(690	\parallel	$n-\frac{5}{2}$										(3.1))
	f_{n+1}	2	0	0 0 0	0 0 0 -	- 10	429)71:	53	$\frac{1}{1}$	n-2											
	f_{n+}	2		0 0 0 0	0 0 0	13	94	012	550U	Ϊľ,	$n-\frac{1}{2}$											
	f_{n+1}	4 4		0 0 0 0	0 0 0	-3	3461	619	968	ľ	$\begin{bmatrix} n-1\\f_n \end{bmatrix}$											
				0 0 0 0	0 0 0 0	$\frac{2}{10}$	025	/96	07													
			L	0 0 0 0	0 0 0 0	26	562()33	50]												

Let

	- 0	0	<u>82845747</u> 21635123		0	0	0	0		1								
	1	0	20785248	849875 21635123	0	0	0	0			۲O	0	0	0	0	0	0	–1ן
	() 1	<u>43934643</u> 21635123	22299520 21635123	0	0	0	0			0	0 0	0 0	0 0	0 0	0 0	0 0	0
$A^{0} =$	(0 0	38086605 21635123	59721728 21635123	1	0	0	0		$, A^{(1)}$	$= \begin{bmatrix} 0\\ 0 \end{bmatrix}$	0	0	0	0	0	0	0
	(0 0	25684128 21635123	47319251 21635123	0	1	0	0			0	0	0	0	0	0 0	0 0	0
	(0 0	45644877 21635123	67280000 21635123	0	0	1	0			0	0	0	0	0	0	0	0
	0	0	656154675 21635123	634519552 21635123	0	0	0	1			20	0	0	0	0	0	0	01
I	-0 0	790	091366400	-7900913	664	00	0	0	0 0	1								
$B^{(0)} =$	-2322364	- 116 136 6880	579846144 757229305 334507225 1817350332 15681458 1363012749 6477344 454337583 14969563 3894322140 3772770 20 51445861 17 30012749 5841 -13917147	1905728 21635123 - <u>2962612775</u> 4673186568 4599823229 23365932840 - <u>234825218</u> 2920741605 - <u>154194523</u> 4673186568 8883875 - <u>0</u> 794880 48321 0 720 0 0 0	0 0 0 0 0	0 0 $\frac{37}{86}$ 0 179	46 210 - 5 12 13483 38894322 50664 77886 261962 554049 12250 1947 1360	556120 635123 981073 0361 22140 9168 5545 5545 5 675360 16107 5	$-\frac{1}{100}$ $-\frac{70}{584}$ $-\frac{1300}{2920}$ 2184 11682 1384 2163 $-\frac{2}{5}$ -7914	0313728 08175615 4498675 36593284 40042 148321 058336 741605 623651 1966420 9250 5123 49390080 184148321 79584	$\begin{array}{r} 2169\\ \hline 10817\\ - 2065\\ \hline 51924\\ 1732684\\ 77886442\\ 2219618\\ 32452684\\ - 46505\\ \hline 778864\\ 2988763\\ 17308099\\ 0 \\ 533\\ 1730809\\ 0 \\ 1 \\ 194\\ 146\end{array}$	275615 585 2952 7 80 5 5 851 4280 5 44 919680 171610 5701	6 654 17 3277 3243 40890 52 9340 	81 1514 85227 24611 702777 12305 52684 03824 17867 53731 1638 24231 9 40	758 45861 5 952 91 9760 5 70 336 3625 33776 95496 889038 -1	640 3247 4194	ł804;	2003
	[0 0]	0	0 0 0	$0 - \frac{1593}{10000}$	9762	<u>2</u>]												

 $B^{(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{108175615}{108175615} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{4782875}{1038485904} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{14584801}{15577288560} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{921571}{649053690} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{4297153}{15577288560} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{940125}{346161968} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{20257960}{194716107} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 266203350 \end{bmatrix}$

We shall normalize the block method (3.1) by multiplying matrices $A^{(0)}$, $A^{(1)}$, $B^{(0)}$, $B^{(1)}$ with inverse of $A^{(0)}$ to obtain $A^{'(0)}$. $A^{'(1)}$. $B^{'(0)}$ and $B^{'(1)}$ respectively. By testing the condition of zero stability of $\rho(R) = det |RA^{'(0)} - A^{'(1)}| = 0$, we have

$$= det \left(\begin{vmatrix} R & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & R & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & R & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & R & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & R & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & R & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & R & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & R & -1 \end{vmatrix} \right) = R^{7}(R-1) = 0$$

Which implies that $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = 0$ and $R_8 = 1$. Hence from the definition (1.3), the method (3.1) is zero stable and also consistent as its order is $[8,8,8,8,8,8,8,8,8]^T > 1$ and thus convergent.

4 Numerical Experiments

The block method derived at k = 4 are demonstrated with the following problems:

Problem 1:

$$y' = -y$$
 $y(0) = 1$, $0 \le x \le 1$, $h = 0.1$

Exact Solution: $y(x) = e^{-x}$

Problem 2:

$$y' = xy$$
, $y(0) = 1$, $h = 0.1$

Exact Solution: $y(x) = e^{\frac{x^2}{2}}$

Problem 3:

$$y' + 4y = 20$$
, $y(0) = 2$, $h = 0.01$

Exact Solution: $y(x) = 5 - 3e^{-4x}$

Table 1. Comparison of approximate solution of problem 1

x	Exact solution	Computed result	Error in [9]	New error
0.1000	0.9048374180359595	0.904837418035945	7.36E-10	1.4988E-14
0.2000	0.818730753077982	0.818730753077965	4.78E-10	1.70974E-14
0.3000	0.740818220681718	0.740818220681713	4.82E-10	4.996E-15
0.4000	0.670320046035639	0.670320046035336	4.36E-10	3.0298E-13
0.5000	0.606530659712633	0.606530659712355	9.13E-10	2.78E-13
0.6000	0.548811636094026	0.54881163609393	6.94E-10	9.59233E-14
0.7000	0.49658530379141	0.496585303791375	6.91E-10	3.50275E-14
0.8000	0.449328964117222	0.44932896411716	6.17E-10	6.2006E-14
0.9000	0.406569659740599	0.40656965974057	9.41E-10	2.89768E-14
1.0000	0.367879441171442	0.367879441171513	7.71-E10	7.100E-14

5 Discussion of Result

We observed that from all the three problems tested with this proposed block hybrid implicit method there results converges to exact solutions and also compared favourably with the existing similar methods (see Tables 1, 2 and 3).

x	Exact solution	Computed result	Error in [3]	New error
0.1000	1.0050125208594	1.00501252086179	3.7950(-11)	2.38987E-12
0.2000	1.02020134002675	1.0202013400286	3.8550(-11)	1.85008E-12
0.3000	1.04602785990871	1.04602785990969	1.1000(-13)	9.79883E-13
0.4000	1.08328706767495	1.08328706776356	9.4456(-10)	8.861E-11
0.5000	1.13314845306682	1.13314845322051	1.4793(-9)	1.5369E-10
0.6000	1.19721736312181	1.19721736337855	1.3264(-8)	2.5674E-10
0.7000	1.27762131320488	1.27762131362009	5.3520(-8)	4.1521E-10
0.8000	1.37712776433595	1.37712776498828	2.7533(-7)	6.5233E-10
0.9000	1.49930250005676	1.49930250107794	1.3014(-6)	1.02118E-09
1.0000	1.64872127070012	1.648721272298	6.3015(-6)	1.59788E-09

Table 2. Comparison of approximate solution of problem 2

Table 3. Comparison of approximate solution of problem 3

x	Exact solution	Computed result	Error in [7]	New error
0.01	2.11763168254303	2.11763168254301	1.1000(-14)	1.9984E-14
0.02	2.23065096084009	2.23065096084004	-	4.9738E-14
0.03	2.33923868984853	2.33923868984853	2.1000(-14)	-
0.04	2.44356863310137	2.44356863310126	-	1.10134E-13
0.05	2.54380774076605	2.54380774076596	5.1000(-13)	9.01501E-14
0.06	2.64011641680034	2.64011641680036	4.0400(-12)	1.9984E-14
0.07	2.73264877563282	2.73264877563282	3.3010(-11)	-
0.08	2.82155288877893	2.82155288877925	5.6076(-10)	3.19744E-13
0.09	2.90697102178691	2.90697102178704	7.4662(-9)	1.30118E-13
1.00	2.98903986189308	2.98903986189323	8.4977(-8)	1.50102E-13

6 Conclusion

We conclude that our proposed block hybrid implicit method is of uniform order 8 at k = 4. Also the new block method displays its superiority over [3,7,9] from tables of results.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Badmus AM, Yahaya YA, Subair AO. Implicit stomer cowell k-step hybrid block methods for solution of first order ordinary differential equations (ODE). International Journal of Applied Mathematical Research. 2014;3(4):464-472.
- [2] Awoyemi DO. A class of continuous methods for general second order initial value problems in ordinary differential equations. International Journal of computer Mathematic. 1999;72:29-33. Available: <u>http://dx.doi.org/10.1080/00207169908804832</u>
- [3] Badmus AM, Mshelia DW. Some uniform order block method for the solution of first-order ordinary differential equations. Journal of Nigerian Association of Mathematical Physics. 2011;19:149-154.

- [4] Badmus AM, Mshelia DW. Uniform order zero-stable k step methods for initial value problems of ordinary differential equations. Journal of Nigerian Association of Mathematical Physics. 2012;20: 65-74.
- [5] Badmus AM, Adegboye ZA. Comparison of two new Quade's type hybrid Block methods for solution of ordinary differential equations. Journal of research in Physical Sciences. 2010;6(1):71-76.
- [6] Lamber JD. Computational methods in ordinary differential equations. John Wiley and Sons, New York. 1973;278.
- [7] Odekunle MR, Adesanya AO, Sunday J. Four point block method for direct integration of first order ordinary differential equations. International Journal of Engineering Research and Applications (IJERA). 2012a;2:1182-1187. ISSN: 2248-9622.
- [8] Yahaya YA, Adegboye ZA. A new Quade's type 4-step blocks hybrid multistep method for accurate and efficient parallel solution of ordinary differential equations. Abacus 34, No 2B. 2007;271-278.
- [9] Umaru M, Ma'ali AI, Badeggi AY. Derivation of block hybrid method for the solution of first order initial value problems in ODEs. The Pacific Journal of Science and Technology. 2014;15:1.

© 2016 Yahaya and Tijjani; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/12619