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Abstract
The restoration of motion-blurred star images under high dynamic conditions is important for
the high-precision attitude measurement of star sensors. Through motion modelling analysis, it
is found that the streak of the imaged star point (star streak) is an elliptical arc. However,
existing star image restoration methods are only suitable for the case where the star streak is a
straight line. For this reason, a star image restoration algorithm for elliptical star streaks is
proposed in this paper. First, the elliptical star streak is transformed into a circular star streak by
projective transformation. Then, the circular star streak is transformed into a straight star streak
by polar coordinate transformation. Finally, the restored original star image is obtained by
restoration methods for straight star streaks and coordinate inverse transformation. At the same
time, the algorithm is further optimized by subdividing the polar coordinates. The experiment
shows that the proposed algorithm is effective and the restoration accuracy is at the same level
as that of existing star image restoration methods for straight star streaks.

Keywords: image restoration, star sensor, star streak, streak transform, triaxial compound motion

(Some figures may appear in colour only in the online journal)

1. Introduction

A star sensor is an instrument that performs high-precision
attitude measurements through observations of stars. It first
takes images of stars and then performs attitude calculations
of the spacecraft based on the imaging information. When the
spacecraft is moving at a high speed, the imaged stars will pro-
duce a streak which is a kind of motion blur. The star streak
will be different under different motion situations. At the same
time, the starlight energy will be dispersed to multiple pixels,
resulting in a lower image signal-to-noise ratio and a lower
star extraction accuracy. This further leads to a reduction in

∗
Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

the accuracy of the attitude measurement. Therefore, how to
eliminate the blur of imaged stars under high dynamic condi-
tions is of great importance for the attitude measurement of
the star sensor.

To solve the above motion blur problem, one kind of
approach is to mitigate the degradation of imaging quality
by improving the hardware, such as Servo Tracking Plat-
form Technology [1], which avoids motion blur of the image
by controlling the platform to compensate the movement of
the star sensor. Or, image blur can be reduced by sensitivity
improved image sensor, such as electron multiplying CCD [2]
and intensified CCD [3]. The improvement of sensitivity can
reduce the exposure time and thus reduce the image blurring.
In addition, by increasing the number of field of view (FOV) of
the star sensor, the sensitivity requirement for a single FOV is
reduced, so that the exposure time of each FOV can be reduced
to suppress image blur, such as the star sensor with multiple
FOV designed in [4]. These hardware based methods are rel-
atively difficult and expensive.
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The other kind of more commonly used approach is to elim-
inate motion blur by software. The software-based approach
can be sub-divided into two types. One is non-blind restor-
ation. Motion-blurred star images are restored with the help
of other instruments which can measure the angular velocity
of the spacecraft. Xiaojuan and Xinlong [5] and Fei et al [6]
restore motion-blurred star images with the help of strap-down
inertial navigation system or MEMS (micro electro mechan-
ical system) gyroscopes. In order to improve the accuracy of
spacecraft angular velocity estimation, Chen et al [7] further
adds extended Kalman filter to the above systems. Sun et al
[8] combines the star sensor with inertial navigation system
based on the work of Chen et al [7]. Ma [9] proposes a multi-
seeded star region growth for star image restoration aided by
MEMS gyroscope. All of these methods realize image restor-
ation based on blur kernel, which is generated according to the
angular velocity of spacecraft measured by other instruments.
In addition, He et al proposed a star image restoration method
based on multi-frame superposition. In this method, adjacent
star images are corrected by a motion recursive model. Then,
they are superimposed together to realize the restoration. This
method focuses on the noise removal and quality of restored
star image, and it also requires the aid of other measuring
instruments.

The other type of software-based approach is blind restor-
ation. The blind restoration is based only on the image taken
by the star sensor. Therefore, it is not necessary to know any
motion information of the star sensor before the restoration.
For the blind restoration of straight star streaks, existing meth-
ods first obtain the direction of the motion and the length of
the streak. Radon transform [10], Hough transform [11], con-
structing differential operator [12], curve fitting [13], spectral
method [14], bispectrum [15], etc are commonly used meth-
ods to obtain the above information. Then the fuzzy kernel
function is generated according to that. Finally, image res-
toration algorithms like L–R filtering [16], Wiener filtering
[17], inverse filtering [18], etc are used to restore the motion-
blurred star image of straight star streaks. In addition, there are
a series of optimized and improved algorithms for detecting
the angle or length of straight star streaks and restoring images
[19–31]. Representative work is as follows. In [22, 23], Huang,
Jie et al proposed an improvedRadon transform for the estima-
tion of blur kernel. The method applies Z-function and double
threshold mask before estimating the parameters to improve
the accuracy of blur kernel estimation. However, this method
requires data of an entire image, thus it cannot be applied to
star sensor working in tracking mode. In [28], Hou et al use
principal component analysis to estimate the angle of blur ker-
nel. In addition, an adjustable weighting method is proposed
to estimate the length of blur kernel. So, the method is able to
quickly estimate the high-precision blur kernel based on single
degraded image. It solves the problem that Randon transform
is vulnerable to noise and has poor robustness, so the method
has better effect for images with low signal-to-noise ratio.

In recent years, deep learning and neural network have
also been applied in the field of image restoration and have

achieved excellent results. Representatively, in [30], Agarwal
et al proposed a depth expanded RL algorithm by com-
bining classical RL filtering with the radial basis function
neural network. It overcomes the disadvantage that the tra-
ditional RL algorithm needs to manually set the number of
iterations. In [31], Chen et al proposed a method based on
sparse representation, hyper-Laplacian priors, and ensemble
neural network, which improves the efficiency and robust-
ness of blur kernel parameter estimation. Image restoration
based on deep learning can achieve simultaneous estima-
tion of blur kernel and sharp images, but it requires a large
number of training samples and a reasonable neural network
model.

Blind restoration algorithms described above for star
images are only suitable for straight star streaks. However,
when the motion situation of the star sensor becomes more
complicated, especially when none of the angular velocities
of the three axes is 0, the star streak is not a straight line. None
of the above methods can be applied.

Meanwhile, through motion modeling analysis, it is found
that the star streak is an elliptical arc. Thus, a blind restoration
algorithm for elliptical star streaks is proposed in this paper.
It provides a new way for the restoration of motion-blurred
star images when the star sensor is under triaxial compound
motion.

The rest of this paper is arranged as follows. The math-
ematical model used in subsequent algorithms are described
in section 2. Detailed steps of image restoration algorithm in
this paper are described in section 3. The performance of this
algorithm is verified by simulation and experiment, and the
results are illustrated in section 4. The conclusions are given
in section 5.

2. Mathematical model

2.1. Imaging model of a star sensor

Figure 1 shows the coordinate system O− xyz of the star
sensor. The relationship between the star point’s observation
vectorws and its imaging point P on the image sensor is shown
in equation (1). Where (x,y) is the coordinate of the centroid
of P and f is the imaging focal length of the star sensor,

ws =
1√

x2 + y2 + f 2

 −x
−y
f

. (1)

When the star sensor works under dynamic conditions, the
imaging point P will be blurred. And the star streak of P will
be different under different motion situations of the star sensor.
Assuming that the change in the vector ws from moment t0
to t0 +∆t is represented by the attitude transformation matrix
At0+∆t
t0 , thenAt0+∆t

t0 can be expressed by the triaxial compound
angular velocity of the star sensor as in equation (2).
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Figure 1. Static imaging model of the star sensor.

At0+∆t
t0 ≈ I3×3 − (ω×) ·∆t

=

 1 ωz∆t −ωy∆t
−ωz∆t 1 ωx∆t
ωy∆t −ωx∆t 1

 (2)

where ω =
[
ωx ωy ωz

]T
denotes the angular velocity

vector of the star sensor, P denotes the exposure time of the
star sensor and ∆t≪ T.

The star streak equation of the imaged point P under
dynamic conditions of the star sensor can be derived by com-
bining equations (1) and (2), as shown in equation (3) [24]:


x(t0 +∆t) = x(t0)+y(t0)ωz∆t+fωy∆t

1− [x(t0)ωy∆t−y(t0)ωx∆t]
f

y(t0 +∆t) = y(t0)+x(t0)ωz∆t+fωx∆t

1− [x(t0)ωy∆t−y(t0)ωx∆t]
f

. (3)

From figure 1 and equation (3), it can be seen that:
When ωz = 0, the star streak is a straight line whose direc-

tion is related to that of the compound angular velocity of ωx
and ωy.

When ωx = 0 and ωy = 0, that is, when the star sensor only
moves around the Z axis, the star streak is a circular arc around
the Z axis.

When ωx ̸= 0, ωy ̸= 0, and ωz ̸= 0, the star streak is neither
a straight line nor a circular arc, but is a more complex arc.

Existing restoration methods of motion-blurred star images
are limited to the case of straight star streaks. In case of com-
plex arc star streaks, new solutions should be found. Firstly,
a detailed analysis of the star streak under non-zero triaxial
angular velocity is presented below. The analysis provides
a theoretical basis for the restoration of motion-blurred star
images under composite motion conditions.

2.2. Imaging model of a star sensor under compound motion

When the star sensor rotates around the X,Y,Z axes with
a triaxial compound angular velocity ω⃗, since ∆t≪ f, then
1− [x(t0)ωy∆t− y(t0)ωx∆t]/f≈ 1. The motion model of the
star’s centroid expressed in equation (3) can be approximated
as equation (4):

Figure 2. Dynamic imaging model of the star sensor with triaxial
compound motion.

Figure 3. Star streaks of different stars at the same compound
angular velocity.

{
x(t0 +∆t) = x(t0)+ y(t0)ωz∆t+ fωy∆t

y(t0 +∆t) = y(t0)− x(t0)ωz∆t− fωx∆t
. (4)

Meanwhile, the direction of ω⃗ is not the normal vector of
the imaging plane as shown in figure 2. It can be seen that the
imaging plane intercepts the conical surface at an angle of β
as a result of the star streak. Therefore, the star streak is an
elliptical arc l [25]. Where the conic surface has the optical
center O as its vertex, the direction of the star vector as its
generatrix, and the angular velocity vector ω⃗ as its rotation
axis. The angle between the generatrix and the rotation axis
is denoted as α,

e=
cos(β)
cos(α)

. (5)

Equation (5) defines the eccentricity of an elliptical star
streak. From the definition, it can be seen that α is differ-
ent for different stars, and β is different for different triaxial
compound angular velocities. Therefore, different stars with
different compound angular velocities will form elliptical star
streaks with different eccentricities. Figure 3 shows the differ-
ent elliptical star streaks formed by different stars at the same
compound angular velocity ω⃗.
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Figure 4. Flow chart of the algorithm.

3. Restoration of star images with elliptical star
streaks

Through the above analysis, it is found that the star streak
is an elliptical arc under non-zero triaxial angular velocity.
Therefore, this paper proposes a coordinate transformation
method based on projective transformation according to the
star sensor’s imaging model. First, elliptical star streaks with
different eccentricities are transferred to circular star streaks
with eccentricities of 0. Then, the circular star streaks are
transformed to straight star streaks by polar coordinate trans-
formation. After that, these straight star streaks can be restored
by the existing image restoration algorithm. At last, the image
is returned to its original coordinate after two times of coordin-
ate inverse transformation. Consequently, motion-blurred star
image with elliptical star streak is restored.

In the process of polar coordinate transformation, if the
quantization units of the rotation angle and the rotation radius
are not chosen properly, it will lead to the deformation of the
restored star spot. This paper solves the problem by subdivid-
ing the quantization units of the rotation angle and selecting
the optimal quantization unit of the rotation angle.

The detailed flow chart of the algorithm is shown in figure 4.

3.1. Ellipse fitting of the star streak

The projective transformation can only be performed after
the expression of the elliptical star streak is obtained through
ellipse fitting. The general expression of an ellipse is shown in
equation (6):

AX2 +BXY+CY2 +DX+EY+F= 0. (6)

In the process of ellipse fitting, the objective function can
be defined as the algebraic distance from the input coordin-
ate point (xi,yi) to the elliptical star streak, as shown in
equation (7):

F(xi,yi) = Axi
2 +Bxiyi+Cyi

2 +Dxi+Eyi+F= 0. (7)

We define the vectors M= [A,B,C,D,E,F]T and X=[
xi2,xiyi,yi2,xi,yi,1

]T
, then equation (7) can be written as

equation (8):

Figure 5. Projective transformation of the star streak from the
image plane to the plane π.

F(Xi) = Xi ∗M= 0. (8)

Thus, the ellipse fitting problem can be reduced to one that
can be solved using the least squares method, as shown in
equation (9):

min
N∑
i=1

F(xi,yi)
2
=min

N∑
i=1

(FM (xi))
2

=min
N∑
i=1

(Xi*M)
2
= 0. (9)

3.2. Transforming elliptical star streaks to circular star streaks
based on projective transformation

From the analysis above, it can be seen that when the star
sensor is under triaxial compound motion, the imaging star
streak is an elliptical arc obtained by intercepting the conic
surface with the imaging plane at a certain angle. The eccent-
ricity of the elliptical star streak is different for different angu-
lar velocities of the triaxial compound motion and different
positions of the star.

As shown in figure 5, the imaging star streak l1 of star 1 in
the imaging plane is an elliptical star streak. If the imaging star
streak is projected onto a plane π with ω⃗ as the normal vector,
the projected star streak l ′1 will become a circular star streak
with an eccentricity of 0. At the same time, streaks of other
stars in the projection plane π will also become circular star
streaks, such as l ′2,l

′
3 in figure 5. Therefore, it is only neces-

sary to determine the projective transformation matrix from
the imaging plane to its corresponding plane π. Then the trans-
formation of an elliptical star streak to a circular star streak can
be realized.

The transformation matrix from the imaging plane to the
projection plane π can be expressed by projective transforma-
tion matrix H with nine parameters. The relationship between
the points on the imaging plane and the points on the projec-
tion plane π can be expressed as follows: x ′i

y ′i
1

=

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 xi
yi
1

 (10)
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where H=

 H11 H12 H13

H21 H22 H23

H31 H32 H33

.
Since the product of

[
H31 H32 H33

]
and[

xi yi 1
]T

is 1, an additional constraint equation can
be obtained so that the matrix variance of H can be reduced
to eight. Therefore, the matrix can be solved by simply taking
the coordinates of four pairs of points on any elliptical star
streak in the imaging plane and on its corresponding circular
star streak in the projection plane π. In order to improve the
accuracy, it is better to select these four groups of corres-
ponding points on a star streak away from the center of the
image, as l3 in figure 5. Meanwhile, for the accuracy of the
calculation, four special points on the elliptical star streak in
the imaging plane is preferred. As shown in figure 5, the four
points A, B, C, D on the ellipse where the star streak l3 is
fitted. Take the elliptical star streak l3 as an example. M is the
intersection of the rotation axis and the imaging plane. Points
A, C are the intersections of l3 and the long axis of the fitted
ellipse in the imaging plane. Points B, D are the intersections
of ellipse, which l3 is fitted, with the line passing through
M and perpendicular to the line AC. After that, the points

A′, B′, C′, D′ on the plane π corresponding to the points A,
B, C, D on the imaging plane are obtained according to the
projective geometry of the star vector. Once the coordinates
of the corresponding points are obtained, H in equation (10)
can be solved by the following method. By substituting each
pair of corresponding points (xi,yi) and (x ′i ,y

′
i )(i= 1,2,3,4)

into equation (10), we can obtain equations (11) and (12):

x ′i =
H11xi+H12yi+H13

H31xi+H32yi+H33
(11)

y ′1 =
H21xi+H22yi+H23

H31xi+H32yi+H33
. (12)

By expanding equations (11) and (12), we can obtain
equations (13) and (14):

x ′i (H31xi+H32yi+H33) = H11xi+H12yi+H13 (13)

y ′i (H31xi+H32yi+H33) = H21xi+H22yi+H23. (14)

Equations (13) and (14) can be further expressed
in the form of Ah= 0 as shown in equation (15):

[
xi yi 1 0 0 0 −x ′ixi −x ′iyi −x ′i
0 0 0 xi yi 1 −y ′ixi −y ′iyi −y ′i

]


H11

H12

H13

H21

H22

H23

H31

H32

H33


= 0 . (15)

By combining the above equations obtained from
four pairs of corresponding points, we can rewrite the

equation in the form of Ah= 0 as shown in equation
(16):


x1 y1 1 0 0 0 −x ′1x1 −x ′1y1 −x ′1
0 0 0 x1 y1 1 −y ′1x1 −y ′1y1 −y ′1

...
x4 y4 1 0 0 0 −x ′4x4 −x ′4y4 −x ′4
0 0 0 x4 y4 1 −y ′4x4 −y ′4y4 −y ′4





H11

H12

H13

H21

H22

H23

H31

H32

H33


= 0 (16)
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where A=



x1 y1 1 0 0 0 −x ′
1x1 −x ′

1y1 −x ′
1

0 0 0 x1 y1 1 −y ′
1x1 −y ′

1y1 −y ′
1

...
x4 y4 1 0 0 0 −x ′

4x4 −x ′
4y4 −x ′

4

0 0 0 x4 y4 1 −y ′
4x4 −y ′

4y4 −y ′
4


,

h=
[
H11 H12 H13 H21 H22 H23 H31 H32 H33

]T
.

The sum of square error of equation (16) can be expressed as
equation (17):

f(h) =
1
2
(Ah− 0)T (Ah− 0) =

1
2
hTATAh. (17)

By computing the partial derivative of f for h and then let-
ting its value be 0, we can obtain equation (18):

df
dh

=
1
2

(
ATA+

(
ATA

)T)
h= 0ATAh= 0. (18)

For the eigen-decomposition result of ATA, the exact value
of h should be equal to the eigenvector corresponding to the
eigenvalue whose value is 0. Considering the noise, h can be
estimated as the eigenvector corresponding to the eigenvalue
closest to 0. Thus, SVD (singular value decomposition) can be
used for decomposing the matrix A:

SVD(A) = U
∑

VT (19)

where V is the eigenvector matrix of ATA. The eigenvector cor-
responding to the eigenvalue closest to 0 is the ninth column
of V, as shown in equation (20):

h= V [:,9]. (20)

Finally, we then obtain the projective transformation matrix
H from h. Based on this, the inverse matrix of H is obtained as
shown in equation (21). It will be used for subsequent coordin-
ate inverse transformation: x ′ ′i

y ′ ′i
1

=H−1

 x ′i
y ′i
1

=

 H11 H12 H13

H21 H22 H23

H31 H32 H33

−1 x ′i
y ′i
1

.
(21)

3.3. Transforming circular star streaks to straight star streaks
based on polar coordinate transformation

After transforming to a circular star streak, a polar coordin-
ate transformation is still needed to transform the circular star
streak to a straight one.

3.3.1. Transforming circular star streaks to straight star streaks
based on polar coordinate transformation. The circular star
streak in the rectangular coordinate system can be transformed
into a straight star streak in the polar coordinate system by
polar coordinate transformation [26, 27]. The polar coordinate
system is defined as a system in which the horizontal coordin-
ate is the angle of rotation θ and the vertical coordinate is

Figure 6. Transformation of the star streak from a rectangular
coordinate system to a polar coordinate system.

the radius of rotation r. This transformation converts the pixel
values of rectangular coordinates in the image to the pixel
values of their corresponding polar coordinates, as shown in
equation (22). In general, the rotation angle is quantified in
the unit of 1◦ and the rotation radius is quantified in the unit
of 1 pixel,

θ =



arctan
( y
x

)
, if x> 0

arctan
( y
x

)
+π, if x< 0 and y⩾ 0

arctan
( y
x

)
−π, if x< 0 and y< 0

π
2 , if x= 0 and y> 0
−π

2 , if x= 0 and y< 0
0, if x= 0 and y= 0

r=
√
y2 + x2 .

(22)
In the polar coordinate system, the length of the straight star

streak represents the rotation angle of the circular star streak
in the rectangular coordinate system. In a time of ∆t, when
different stars rotated and blurred around the Z axis, the rota-
tion angle is same but the length of the circular star streak
on the imaging plane is different. Therefore, after the polar
coordinate transformation, lengths of the transformed straight
star streaks corresponding to all circular star streaks are the
same, as shown in figure 6.

3.3.2. Blind restoration of motion-blurred images in the polar
coordinate system. After elliptical star streaks being trans-
formed into straight star streaks, it is possible to restore straight
star streak through existing methods such as Lucy–Richardson
algorithm.

The Lucy–Richardson algorithm is an image restoration
algorithm based on the fuzzy kernel function. The algorithm
assumes that the pixels in the image obey the Poisson Distri-
bution. Then the maximum likelihood estimation is applied to
iteratively compute the degraded image to obtain a clear image
that is closest to the original image. The image restoration
model can be expressed as equation (23), where fk(x,y) is the
estimation result in the kth iteration of the original clear image,
fk+1(x,y) is the estimation result in the (k+ 1) iteration, g(x,y)
is the degraded image and h(x,y) is the fuzzy kernel function.
The initial value of iterations can be set as f0(x,y) = g(x,y).

6



Meas. Sci. Technol. 34 (2023) 065403 Q-Y Fan et al

Figure 7. Star streak before and after restoration in the polar
coordinate system.

As the number of iterations increases, fk+1(x,y) will converge
gradually, until the original clear image is restored,

fk+1 (x,y) = fk (x,y)

[
h(−x,−y)* g(x,y)

fk (x,y)*h(x,y)

]
. (23)

To generate the fuzzy kernel function h(x,y), the angle and
the length of the motion blur has to be determined first. The
angle is 0 for the transformed horizontal straight star streaks,
thus only the motion length needs to be acquired. In this paper,
the Steger algorithm is used to get the length of themotion blur.

For the motion blur caused by uniform linear motion, the
fuzzy kernel function can be expressed as equation (24), where
θ is the motion blur angle (the angle between the motion dir-
ection and the positive direction of the horizontal axis), L is
the motion blur scale (the distance of the pixel movement in
the motion direction),

h(x,y) =

{
1
L ,0⩽ x⩽ Lcosθ,0⩽ y⩽ xtanθ

0,others
. (24)

Figure 7 shows the restoration results of straight star streaks
in the polar coordinate system using the Lucy–Richardson
algorithm.

3.3.3. Coordinate inverse transformation. As a final step,
the restored image needs to be transformed into the ori-
ginal coordinate system by two times of coordinate inverse
transformation.

The first one is polar coordinate inverse transformation.
Pixel information is transformed from polar coordinates to the
rectangular coordinate system of the plane π. The formula of
the inverse transformation is shown in equation (25), and the
schematic diagram of it is shown in figure 8, x= ρ ∗ cosθ

y= ρ ∗ sinθ
F(x,y) = G(θ,ρ)

. (25)

The second inverse transformation is to transform rectan-
gular coordinates from the plane π to the imaging plane. The
corresponding transformation matrix is the inverse matrix of
the transformation matrix from the imaging plane to the plane
π, which is shown in equation (21).

After completing all the above transformations, the final
restoration result of the original star image with the elliptical

Figure 8. Inverse transformation of the star from the polar
coordinate system to the rectangular coordinate system.

Figure 9. Processing results in each step of the restoration
algorithm proposed in this paper.

star streak can be obtained. Figure 9 shows the actual pro-
cessing results after each step of the restoration algorithm.

3.3.4. Optimization of restoration results based on subdivid-
ing the polar coordinate. In the polar coordinate transform-
ation, when the transformation is performed according to the
conventional quantization unit (i.e. the rotation angle is quant-
ized in the unit of 1◦ and the rotation radius is quantized in
the unit of 1 pixel), the restored star spot will suffer obvious
tangential stretch deformation when transformed to the rect-
angular coordinate system, as shown in figure 8. The reason
for this phenomenon is that the restored spot is not an ideal
one. It is a point with a certain length and width. The width
of the star spot depends on the quantization unit of the rota-
tion angle. The larger the quantization unit is, the longer the
width of the restored star spot is. The longer the width is, the
longer the arc length of the star spot inverse-transformed to
the rectangular coordinate system is. The larger the difference
between the arc length and the radial width is, the more obvi-
ous the spot deformation is. Thereby, the optimal quantization
unit of the rotation angle is selected to effectively solve the
spot deformation, thus ensuring the restoration accuracy.

Firstly, the quantization unit of the rotation radius∆r is set
to 1 pixel. Then, the quantization unit of the rotation angle
is ∆θopt width of the recovered star spot in polar coordinate
system isWr and length of it is Lθ, where the length Lθ corres-
ponds toN rotation angle quantization units. In the rectangular

7
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Figure 10. Polar coordinate transformation after optimization based
on subdividing polar coordinates.

coordinate system, the optimal quantization unit value of the
tangential rotation angle∆θopt will be different if the star spot
is located at a different radius r. Therefore, the radius is chosen
to be half of the polar coordinate rotation radius, i.e. 1/4 length
of the image sensor. The optimal rotation angle quantization
unit corresponding to the above is used as the optimal rotation
quantization unit for the transformation in this paper, so that
the optimal rotation angle quantization unit value is obtained
according to equation (26),

Wr =
Lθ
360◦

· 2πr=
N×∆θopt

360◦
· 2πr

∆θopt =
Wr× 180◦

r×π×N
. (26)

In this paper, the radial width of the recovered star spotWr

in polar coordinate system is three pixels, the length of the
recovered star spot N is four quantization units. The simulated
star sensor contains 2048 × 2048 pixels. Hence, r is taken as
themiddle value of 0–1024 pixels, i.e. 512 pixels. Therefore, in
this paper, the optimal quantization unit value of the tangential
rotation angle is 0.1◦.

Figure 10 shows the processing results of polar coordinate
transformation with the radial rotation radius quantized in 1
pixel and the rotation angle quantized in 0.1◦. As can be seen
from figure 10, the transverse width of the restored star spot
is significantly compressed compared with the conventional
polar coordinate transformation method. And there is no tan-
gential stretching deformation of the star spot after the polar
coordinate inverse transformation, which improves the restor-
ation accuracy.

4. Simulation and experimentation

4.1. Simulation analysis

The proposed algorithm is simulated and validated according
to the typical parameters of the star sensor. The pixel array of
the star sensor consists of 2048× 2048 pixels. The focal length
of the star sensor is 55 mm. The angle of FOV is 25◦. The
exposure time of the star sensor is 0.1 s. The pixel gray value
of the image at the time of exposure is determined according
to equation (27). Typical star spot size is 3 × 3 pixels. The
brightness levelA of the star spot is set to 0.3 and the dispersion
radius σr is set to 0.35. Ng is the added Gaussian noise with

Figure 11. Comparison of before and after restoration by the
proposed algorithm in two experimental cases: (a) comparison of
before and after restoration under different noise intensities, (b)
comparison of before and after restoration under different angular
velocities.

Figure 12. Restoration accuracy at different angular velocities.

intensity σg. (xc (t) ,yc (t)) represents the center location of the
star spot’s energy distribution at t(t ∈ [0,T]),

Is (xi,yi) =
ˆ T

0

A
2πσ2

r
exp

{
− [xi− xc (t)]

2
+ [yi− yc (t)]

2

2σ2
r

}
dt

+Ng (xi,yi) . (27)

Based on the algorithm in this paper, simulation images
at different angular velocities are tested and validated. Then,
the results are compared with similar existing restoration
algorithms. Figure 11 shows two representative results chosen
from all experimental conditions. Figure 11(a) shows the result
before and after restoration when the triaxial angular velocities
areωx= 5 rad s−1,ωy= 5 rad s−1,ωz= 5 rad s−1, and the noise
intensities are σg = 0.00, σg = 0.01, σg = 0.015 respectively.
Figure 11(b) shows result before and after restoration when the
triaxial angular velocities are ωx = 5 rad s−1, ωy = 5 rad s−1,
ωz= 5 rad s−1,ωx= 5 rad s−1,ωy= 5 rad s−1,ωz= 10 rad s−1,
ωx = 5 rad s−1, ωy = 5 rad s−1, ωz = 15 rad s−1 respectively
and the noise intensity is σg = 0.01. From figure 11, it can be
seen that the algorithm in this paper can effectively restore the
star streaks at different compound angular velocities.

Figure 12 shows the experimental results of the restora-
tion accuracy with different triaxial angular velocities ω⃗ ∈

8
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Table 1. Comparison of restoration accuracy.

Algorithms

Star point centroid localization
accuracy of the restoration
image

Non-blind restoration Deep coupling of star tracker and MEMS-gyro [9] 0.16 pixel
Multi-seed growth followed by RCRM restoration method [32] 0.1471 pixel

Blind restoration Traditional motion blur restoration algorithm model [9] 0.36 pixel
RL restoration method based on second-order vector extrapolation [23] 0.3225 pixel
Real-time star tailing removal method based on fast blur kernel estimations [28] 0.2489 pixel
Algorithm of this paper Noise intensity σg (0–0.03) 0.2370 pixel

Angular velocity ω⃗ (8–17 rad s−1) 0.2983 pixel

Figure 13. Restoration accuracy at different noise intensities.

[8,17] rad s−1. It can be seen that the centroid localization
accuracy of the restored images is about 0.19–0.39 pixels.

In the existing literature, there are only studies of linear
motion-blurred restoration. Therefore, the accuracy of the pro-
posed algorithm compared with similar existing methods, is
shown in table 1. It can be seen that the accuracy is at the same
level as existing star image restorationmethods for straight star
streaks.

Besides, the robustness of the proposed algorithm is tested
and validated using images with different noise intensities.
The noise is Gaussian noise with intensity σg (0–0.03). The
accuracy for each data group is shown in figure 13. It can be
seen that the proposed algorithm is still able to restore effect-
ively under different noise intensities.

4.2. Experimental validation

The algorithm of this paper is tested on actual images with
laboratory star sensor and the corresponding test equipment.
The experiment setup is shown in figure 14. The single-
star simulator is used to simulate a single-star target, and
the triaxial turntable is used to simulate triaxial compound
motion conditions. Figure 15(a) shows the actual image taken
when the triaxial angular velocities are ωx = 1 rad s−1,
ωy = 1 rad s−1, ωz = 15 rad s−1 respectively. Figure 15(b)
shows the restoration image of the actual image with the pro-
posed algorithm. It can be seen that the algorithm in this paper
can restore the actual image effectively.

In the actual experimental test, due to the limited aperture
of the single-star simulator (22 cm), if the angular velocity is
too large, the star streak will quickly run out of the imaging
plane. If the angular velocity is too small, the star streak is

Figure 14. Experimental setup.

Figure 15. A blurred star image captured in the experiment and the
restoration result: (a) actual captured image. (b) Restoration result
of star streak.

approximately a straight star streak. Therefore, the experiment
has some limitations. But it can still be able to validate the
effectiveness of the proposed algorithm to some degree.

5. Conclusion

In this paper, a restoration algorithm for the star streak which
is not a straight line is proposed. Through motion modeling
analysis, it is found that the star streak is an elliptical arc
under non-zero triaxial angular velocity. First, the elliptical
star streak is transformed into a circular star streak by project-
ive transformation. Then, the circular star streak is transformed
into a straight star streak by polar coordinate transformation.

9
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The original elliptical star streak is restored by restoration
methods for straight star streaks and coordinate inverse trans-
formation. At the same time, the algorithm is further optimized
by subdividing the polar coordinates. The proposed algorithm
is tested and validated by simulation and experimentation. The
experimental results show that the algorithm is effective. The
accuracy of the restored image is about 0.15–0.32 pixels with
the noise intensity σg being 0–0.03 and the triaxial angular
velocity being ωx = 5 rad s−1, ωy = 5 rad s−1, ωz = 5 rad s−1

respectively. The accuracy of the restored image is about 0.19–
0.39 pixel with the noise intensity σg being 0.01 and the tri-
axial angular velocity being ω⃗ ∈ [8,17] rad s−1 respectively.
The accuracy is at the same level as that of existing star image
restoration methods for straight star streak.

This method can ensure the accuracy of star spot centroid
extraction and altitude calculation under triaxial compound
motion condition, and consequently improve the performance
of star sensor.

In the future, more work will be done on this topic, espe-
cially in the direction of improving the restoring speed and
increasing the robustness.
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