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Abstract
Particle tracking velocimetry (PTV) is widely used to measure time-resolved, three-dimensional
velocity and pressure fields in fluid dynamics research. Inaccurate localization and tracking of
particles is a key source of error in PTV, especially for single camera defocusing, plenoptic
imaging, and digital in-line holography (DIH) sensors. To address this issue, we developed
stochastic particle advection velocimetry (SPAV): a statistical data loss that improves the
accuracy of PTV. SPAV is based on an explicit particle advection model that predicts particle
positions over time as a function of the estimated velocity field. The model can account for
non-ideal effects like drag on inertial particles. A statistical data loss that compares the tracked
and advected particle positions, accounting for arbitrary localization and tracking uncertainties,
is derived and approximated. We implement our approach using a physics-informed neural
network, which simultaneously minimizes the SPAV data loss, a Navier–Stokes physics loss,
and a wall boundary loss, where appropriate. Results are reported for simulated and
experimental DIH-PTV measurements of laminar and turbulent flows. Our statistical approach
significantly improves the accuracy of PTV reconstructions compared to a conventional data
loss, resulting in an average reduction of error close to 50%. Furthermore, our framework can be
readily adapted to work with other data assimilation techniques like state observer, Kalman
filter, and adjoint-variational methods.

Keywords: particle tracking velocimetry, data assimilation, digital in-line holography,
physics-informed neural network
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1. Introduction

Measurement techniques that can capture time-resolved,
three-dimensional (3D), three-component (3C) velocity fields
are essential to the study of fluid dynamics [1, 2]. For instance,
3D3C flow diagnostics have been deployed to support research
on turbulent boundary layers [3, 4], unsteady jets and wakes
[5, 6], turbulent combustion [7], and an array of biomedical
flows [8, 9], among many other targets. Moreover, reliable
velocity and pressure data are needed to develop and valid-
ate computational fluid dynamics (CFD) models for engin-
eering design, especially in scenarios that feature variable
density mixing, high flow speeds, reactions, and non-ideal
fluids [10]. The measurements should be accurate, precise,
well-resolved in space and time, and non-intrusive. Optical
diagnostics have the potential to meet these requirements,
especially particle-based techniques like particle image and
tracking velocimetry (PIV and PTV), but there are often signi-
ficant trade-offs between spatial and temporal resolution and
the pressure field is not readily accessible [11]. While PIV
can be combined with tomographic reconstruction for 3D3C
velocimetry, this approach suffers from reconstruction errors,
like ghost particles [12], and spatial filtering [1], so PTV is
often preferred. This paper reports a new framework for 3D
PTV that can enhance the accuracy of velocity and pressure
field estimates, regardless of the imaging modality, and enable
the use of PTV with particles that do not perfectly follow the
flow.

3D PTV generally proceeds as follows. Tracer particles
are seeded into the flow or arise spontaneously, e.g. atomized
droplets, bubbles in a liquid, snowfall, etc. The particles are
illuminated, usually with a laser, and images of the measure-
ment domain are recorded with one or more cameras. Next,
a localization algorithm is employed to identify the 3D pos-
ition of each particle in each frame, and the particles are fol-
lowed across successive frames with a tracking algorithm, res-
ulting in Lagrangian particle trajectories called ‘tracks’. These
steps may be performed synergistically, as in the Shake-The-
Box (STB) method [13]. Many applications call for Eulerian
velocity and/or pressure fields, which requires post-processing
of the particle tracks. For instance, velocity fields are com-
monly utilized to identify coherent structures in turbulent flow
[13], estimate a dissipation rate field to support modeling [3],
infer pressure fields to study aeronautics and surface loading
[14], and so on. Unfortunately, localization, tracking, and post-
processing are all subject to appreciable uncertainties [15], and
regularization is often required to reduce the effects of noise
and produce estimates that are consistent with the governing
physics.

Particle localization techniques fall into two broad categor-
ies: triangulation and numerical refocusing, which generally
correspond to distinct imaging modalities. These techniques
are sketched in figure 1. Triangulation is typically employed
to locate particles frommulti-camera images of Mie scattering
off the particles6. This is the most common form of PTV

6 Other data, e.g. plenoptic images of Mie scattered light from a particle field,
can also be processed with a triangulation algorithm to locate particles [16].

and is usually conducted with three or more cameras. Each
particle’s location in a single image corresponds to a line-of-
sight through physical space, so the lines-of-sight transecting
one particle from multiple images can be leveraged to trian-
gulate that particle’s position in 3D space [17]. This proced-
ure requires the cameras to be calibrated in a consistent global
coordinate system, and individual particles must be identified
in two or more simultaneous images to obtain the requisite
lines-of-sight. Particle identification is typically carried out
through a probabilistic, sequential search across all views, as
set out by Wieneke [18]. Ambiguous particle matches and
experimental factors like variable laser illumination, back-
ground noise, and calibration drift limit the accuracy of trian-
gulation, especially at high seeding densities [13]. These errors
are contingent on the number and position of cameras, result-
ing in a potentially complex spatial distribution of localization
uncertainties.

Numerical refocusing is a depth sensing procedure used in
the context of single-camera and limited-angle systems, such
as a plenoptic camera [19, 20], synthetic aperture (SA) array
[21], or digital in-line holography (DIH) setup [22]. The detec-
ted light field or hologram is refocused (‘backpropagated’)
onto a series of planes oriented parallel to the sensor. Particles
are assumed to lie in the plane which gives rise to the sharpest
image, i.e. where the refocused diameter is at a minimum.
However, while it is trivial to determine the 2D location of
particles in an image, the accuracy of depth sensing is rel-
atively poor due to the finite depth-of-field (DoF) of a real
imaging system [23]. Consequently, particle position estim-
ates exhibit an anisotropic distribution of uncertainty that is
elongated normal to the sensor plane [24]. Various algorithms
have been designed to improve this procedure by incorpor-
ating additional information, including the minimum intens-
ity or intensity variance of a particle stream [25, 26], max-
imum gradient of particle edges [27], and combinations of
these criteria [24, 28]. Nevertheless, improvements are lim-
ited and large uncertainties remain prevalent in PTV experi-
ments that require refocusing. We demonstrate our technique
on DIH data that is processed with a refocusing algorithm, but
the method generalizes to triangulation methods.

Once the tracer particles have been localized, tracking
is performed to link them across two or more sequential
frames to form a Lagrangian track and compute particle dis-
placements. This is done by algorithms that minimize a cost
function designed to be low for tracks that faithfully fol-
low a single particle and high for tracks that are incomplete
or contain an erroneous match. The simplest strategy is to
link particles with the smallest displacement between frames,
called ‘nearest neighbor’ tracking. However, this approach can
only be used in scenarios where particle displacements are
much smaller than particle spacing. In other words, the per-
formance of nearest neighbor tracking is poor at high seeding
densities [29]. To solve this issue, researchers have developed
an array of algorithms that exploit known properties of velo-
city fields. Examples include multi-frame schemes that pro-
mote temporal smoothness by penalizing improbably large
acceleration events [29, 30] and spatial smoothness by pen-
alizing nearby tracks with divergent shapes [31]. Recent PTV
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Figure 1. Particle localization using (a) triangulation and (b) numerical refocusing.

algorithms have also combined the tracking and localization
steps to enhance the accuracy of both, as is the case in the STB
method [13]. STB is tailor-made for triangulation from Mie
scattering images and has been successfully deployed to meas-
ure densely-seeded turbulent flows [32, 33]. Another common
scheme is Crocker–Grier tracking [34], which is agnostic to
the localization technique (unlike STB) and has been utilized
to track a wide array of objects including micro-organisms
[35], cells [36], and colloidal particles [37] in fluid dynam-
ics and biology research. Taking the Crocker–Grier approach,
particle positions are linked across time but not corrected,
meaning that significant localization errors may persist in the
tracks.

Lagrangian particle velocity data is spatially sparse and
PTV practitioners usually use the particle tracks to estimate
Eulerian flow fields. Early conversion techniques filled the
gaps between tracks with naïve interpolation [38], which is
prone to oversmoothing in some cases and overfitting in oth-
ers, leading to large errors [39]. Most PTV algorithms attempt
to reduce these errors by incorporating the governing phys-
ics into the reconstruction procedure. This approach yields an
optimization problemwhich seeks to satisfy experimental data
and known flow physics, often using conventional CFD meth-
ods, termed data assimilation (DA). Two popular DA tech-
niques for PTV are FlowFit [40] and Vortex-in-Cell+ (VIC+)
[41], both of which (partially) incorporate the Navier–Stokes
equations to improve the accuracy and resolution of velo-
city field estimates. These 3D3C fields are post-processed to
determine the pressure field by (1) direct integration of pres-
sure gradients along one or more paths [42, 43] or (2) solving a
global pressure Poisson equation [44, 45]. DA algorithms that
sequentially estimate velocity and pressure normally feature
a complex numerical scheme and can only partially assimilate
the governing physics. Moreover, the localization and tracking
errors from previous steps tend to propagate through the DA
algorithm, leading to significant errors in the Eulerian fields.

In this work, we introduce a novel framework for PTV
DA: particle advection velocimetry (PAV). Observed particle
tracks are compared to synthetic tracks obtained by advect-
ing particles with the current estimate of the velocity field,
which facilitates large timesteps and non-ideal tracers (inertial
particles). Tremendous effort has been devoted to uncertainty
quantification (UQ) for PTV systems [15, 19, 24, 35]. We

thus derive and demonstrate a statistical approach to PAV
called stochastic PAV (stochastic particle advection veloci-
metry (SPAV)), which accounts for arbitrary localization
uncertainties. Our method provides a simple and robust frame-
work to take advantage of existing PTV UQ results to improve
reconstructions. We utilize the SPAV data loss to simultan-
eously estimate velocity and pressure fields from error-laden
particle tracks. While SPAV may be implemented in conjunc-
tion with most PTV DA techniques, we employ a physics-
informed neural network (PINN) [46] in this work. SPAV
can accommodate any PTV modality, and we demonstrate it
with simulated and experimental DIH-PTV examples, show-
ing marked improvements over conventional techniques at a
reasonable computational cost.

2. PAV

The goal of PTV DA is to reconstruct Eulerian velocity and
pressure fields that are consistent with Lagrangian particle
tracks extracted from the image data and the equations gov-
erning fluid dynamics. Incorporating physical measurements
into a numerical simulation requires a model of the measure-
ment procedure. The fidelity of reconstructions is contingent
upon the accuracy of this model, and this section describes
an improved framework for modeling PTV measurements in
a DA algorithm. We utilize a PINN for PTV DA, but there
are many alternative techniques like adjoint-variational and
observer-based algorithms that can be combined with SPAV.
These and other DA methods are discussed in appendix A. To
begin, we review the conventional objective loss for PTV DA,
followed by a presentation of our PAV and SPAV losses. A
pictorial diagram of these techniques can be seen in figure 2.
This section concludes with a brief description of PINNs
applied to PTV DA.

2.1. Conventional data loss

The vast majority of DA algorithms for PTV employ a
displacement-based velocity estimate in the data loss term,
e.g. [40, 41, 47–50], as illustrated in figure 2(a). The velocity
of a particle is calculated from its displacement between two
frames,

3



Meas. Sci. Technol. 34 (2023) 065302 K Zhou et al

Figure 2. Data loss terms for PTV: (a) conventional velocimetry, (b) PAV, (c) SPAV using Monte Carlo simulation, (d) SPAV using an MVN
fit, (e) SPAV using an advected fluid element. Large blue dots indicate measured positions, small black and grey dots indicate samples from
a particle position PDF.

û1.5 ≈
x̂2 − x̂1
∆t

, (1)

where x= [x,y,z]T and u= [u,v,w]T are position and velo-
city vectors, (̂·) indicates a measured or estimated quant-
ity, and ∆t is the interval between frame one and two. Sub-
scripts in equation (1) indicate the timestep, and the velocity
is imputed to the particle at the midpoint, x̂1.5 = (x̂2 − x̂1)/2.
The displacement-based (a.k.a. ‘conventional’) data loss for
velocimetry compares velocity estimates from equation (1) to
the output of a model,

Lconv
data =

1
N

N∑
i=1

∥∥∥û(i)1.5 −u
(
x̂(i)1.5,θ

)∥∥∥2

2
, (2)

where the index i loops over N particle pairs and u(x,θ) is
the velocity field at x outputted by a numerical model. This
model is parameterized by the vector θ, which could signify
weights and biases in a PINN, discrete velocity and pressure
data corresponding to a CFDmesh, etc. The superscript ‘conv’
indicates the conventional data loss for PTV DA.

2.2. Vanilla PAV

In ‘PAV’, we replace the velocity-wise comparison in
equation (2) with a position-wise comparison. Assuming the
particle is an ideal tracer (i.e. it faithfully follows the flow), the
advected position may be calculated by integrating the estim-
ated velocity field,

dx
dt

= u ⇐⇒ x2 (x1,θ) =
ˆ t2

t1

u [x(t) ,θ]dt+ x1, (3)

where x(t) is the solution to the differential equation on the left
side of equation (3) initialized at x1. Our PAV data loss sums
the distance between tracked particle positions in frame two,
denoted x̂2, and the positions obtained by advecting particles
from the tracked location in frame one, x̂1, via the current
estimate of the velocity field, θ:

LPAV
data =

1
N

N∑
i=1

∥∥∥x̂(i)2 − x2
(
x̂(i)1 ,θ

)∥∥∥2

2
. (4)

This procedure is depicted in figure 2(b). Equation (3) may be
computed using a variety of numerical schemes like Runge–
Kutta methods. Moreover, while equation (3) applies to ideal
tracer particles that perfectly follow the flow, non-ideal effects
like drag or thermophoresis may be included by explicitly
modeling all the forces acting on a particle,

m
d2x
dt2

= fp. (5)

In this expression, fp is the net force (comprising drag, buoy-
ancy, etc) on a particle of mass m. Implementing a PAV loss
based on equation (5) can potentially enable the reconstruction
of Eulerian fields from PTV tracks in new physical regimes.

2.3. Stochastic PAV

The PAV data loss in equation (4) assumes that the particle
positions x̂1 and x̂2 have been faithfully recovered. In real-
ity, these quantities are often subject to large, anisotropic
errors that depend on the imaging setup and particle track-
ing algorithms. Localization errors act as noise, limiting the
degree to which the physical model can be optimized (via a
physics loss) if the positions are treated as a known quant-
ity. Moreover, anisotropic errors may lead to biased velocity
fields. These problems also apply to the conventional velo-
city loss in equation (2), since both û1.5 and x̂1.5 are adversely
affected by localization errors. Therefore, an alternative data
loss that accounts for measurement uncertainty is needed.

Stochastic PAV is based on the chance of measuring the
particle positions x̂1 and x̂2 subject to the velocity field given
by θ and the measurement uncertainty. This corresponds to a
likelihood probability density function (PDF),

P(x̂2|x̂1,θ) =
ˆ
P(x̂2|x1,θ)P(x1|x̂1)dx1, (6)

which contains two key PDFs. First, P(x1|x̂1) is an error
model, which describes the probability of a particle being
located at x1 if it was measured at x̂1. Second, P(x̂2|x1,θ)
describes the chance of measuring the particle at x̂2 for a
known starting point, x1, and the velocity field given by θ.
The latter PDF contains an error model as well as the advec-
tion model from equation (3) or (5). Equation (6) ought to be
maximized, so the SPAV data loss, which must be minimized,
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comprises the aggregate negative log likelihood of the tracked
particles,

LSPAV
data =−

N∑
i=1

log
[
P
(
x̂(i)2

∣∣∣x̂(i)1 ,θ
)]

. (7)

Implementing this loss requires a model of localization errors.
It should be noted thatP(x̂2|x̂1,θ) can be augmented to include
the probability of tracking errors, ghost particles, and the like.

While any error model can be incorporated into
equation (6), we illustrate SPAV with the widely-applicable
multivariate normal (MVN) model,

P(x|x̂) = det(2πΓ)−1/2 exp

[
−1

2
(x− x̂)TΓ−1 (x− x̂)

]
,

(8)

where x is the (unknown) true particle position, x̂ is the meas-
ured position, andΓ is a covariancematrix which describes the
magnitude and orientation of measurement errors. Many real-
istic localization errors can be approximated using an MVN
PDF. Conveniently, P(x1|x̂1) can be directly computed using
equation (8). The advected particle PDF is obtained by tra-
cing a particle from x1 to x2 with equation (3) or (5), P(x2) =
P[x2(x1,θ)], such that

P(x̂2|x1,θ) = P [x̂2|x2 (x1,θ)] . (9)

For MVN errors, this calculation may be performed using
equation (8) because the MVN model is symmetric, i.e.
P(x|x̂) = P(x̂|x). Otherwise, separate expressions need to be
provided for the ‘localization PDF’, P(x|x̂), and the ‘measure-
ment PDF’, P(x̂|x). These functions must be obtained through
a numerical or experimental UQ procedure [15, 19, 24, 35].

Unfortunately, the SPAV likelihood is a nonlinear function
of θ, even when an MVN distribution is employed to model
the localization errors. Therefore, P(x̂2|x̂1,θ)must be approx-
imated using a numerical technique. We devised three approx-
imations that are suitable for SPAV.

2.3.1. Monte Carlo sampling. The most precise method for
calculating the SPAV likelihood is Monte Carlo simulation
[51], as shown in figure 2(c). This is done by sampling particle
locations from the localization PDF at frame one, advecting
those samples over the measurement interval, and comput-
ing the average measurement loss for the tracked positions at
frame two. Formally,

P(x̂2|x̂1,θ)≈
1
M

M∑
j=1

P
(
x̂2
∣∣∣x̃( j)1 ,θ

)
, (10)

whereM samples of x1, denoted x̃1, are drawn from P(x1|x̂1);
P(x̂2|x̃1,θ) is given by the measurement PDF, P(x̂2|x2), eval-
uated in terms of the advected position, x2(x̃1,θ). While this
produces an accurate likelihood PDF for large values of M, it
may also be cost-intensive. The high cost per particle limits
the batch size used in training, which can slow or altogether
prevent the progress of an optimization algorithm.

2.3.2. MVN approximation. If an MVN error model is suit-
able and the measurement interval is short, then the distribu-
tion of advected particles can be represented using a rotated
and sheared MVN distribution as shown in figure 2(d). To
do this, samples of x1 are drawn from P(x1|x̂1) and advec-
ted using equation (3) or (5). The mean and covariance of the
resulting (presumed) MVN distribution are

µ̂2 =
1
M

M∑
j=1

x2
(
x̃( j)1 ,θ

)
and (11a)

Γ̂2 =
1
M

M∑
j=1

[
x2

(
x̃( j)1 ,θ

)
− µ̂2

][
x2

(
x̃( j)1 ,θ

)
− µ̂2

]T
,

(11b)such that the advected particle PDF is

P(x2|x̂1,θ) = det
(
2πΓ̂2

)−1/2

× exp

[
−1

2
(x2 − µ̂2)

T
Γ̂
−1
2 (x2 − µ̂2)

]
. (12)

This expression can be utilized to calculate the SPAV PDF,

P(x̂2|x̂1,θ) =
ˆ
P(x̂2|x2)P(x2|x̂1,θ)dx2, (13)

whereP(x̂2|x2) is given by equation (8) because the symmetric
MVN error model has been assumed. The convolution of two
MVN distributions in equation (13) has an exact expression,

P(x̂2|x̂1,θ) = det
[
2π

(
Γ+ Γ̂2

)]−1/2

× exp

[
−1

2
(x̂2 − µ̂2)

T
(
Γ+ Γ̂2

)−1
(x̂2 − µ̂2)

]
,

(14)

where Γ is the generic measurement uncertainty from
equation (8). This approximation is more stable than Monte
Carlo simulation, but the cost is not significantly lower since
many samples are needed for estimates of µ̂2 and Γ̂2 to con-
verge. Moreover, the advected distribution is not necessarily
MVN when there is significant shear or rigid body rotation
along the particle’s path. As a result, there is a complex trade-
off between the increased efficiency and reduced accuracy of
the MVN approximation.

2.3.3. Fluid element approximation. An even cheaper MVN
approximation may be realized by advecting an ellipsoidal
fluid element that comprises six points; a four-point, 2D
example of this is illustrated in figure 2(e). The points are loc-
ated along the principle axes of Γ, which may be extracted
through an eigenvalue decomposition,

QΛQT = Γ, (15)

where Q= [q1,q2,q3] contains the principle directions of Γ
and Λ= diag([λ2

1,λ
2
2,λ

2
3]) contains the corresponding vari-

ances. A natural choice is to place the points at x̂1 ±λ1q1,
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x̂1 ±λ2q2, and x̂1 ±λ3q3 and advect them to the next meas-
urement interval,

x+1
2 = x2 (x̂1 +λ1q1,θ) , x

−1
2 = x2 (x̂1 −λ1q1,θ) ,

x+2
2 = x2 (x̂1 +λ2q2,θ) , . . . (16)

and the advected centroid is taken to be the mean,

µ̂2 =
1
6

(
x+1
2 + x−1

2 + x+2
2 + x−2

2 + x+3
2 + x−3

2

)
. (17)

Next, we collect the advected vertices into a matrix, center
them, and perform a singular value decomposition,

UΣVT =
[
x+1
2 ,x−1

2 ,x+2
2 ,x−2

2 ,x+3
2 ,x−3

2

]
− µ̂21

T, (18)

where 1 is a 6× 1 vector of ones. Lastly, these elements are
used to estimate the advected covariance matrix,

Γ̂2 =
1
2
UΣ(UΣ)T. (19)

Given µ̂2 and Γ̂2 from equations (17) and (19), equation (14)
may be used to compute the SPAV likelihood PDF. This pro-
cedure is less accurate than the Monte Carlo or sample-based
MVN techniques, but it is also hundreds to thousands of times
cheaper, dramatically increasing the maximum batch size.

It should be noted that the fluid element technique can be
conducted using multiple ellipsoids with distinct radii. These
ellipsoids could be weighted by distance from the centroid,
which may help to stabilize the technique in regions of high
shear and/or rotation.

2.4. Velocimetry with a PINN

The above conventional, PAV, and SPAV data losses are read-
ily implemented in a PINN-based framework for DA7. PINNs
are deep, feedforward neural networks that can approximately
solve a forward or inverse problem that is governed by dif-
ferential equations [46]. Figure 3 shows a PINN set up for
velocimetry. In effect, the network is a functional represent-
ation of the flow, mapping spatio-temporal inputs to velocity
and pressure outputs, (x,y,z, t)→ (u,v,w,p). Additional out-
put fields may be added as necessary. Partial derivatives of
the PINN are efficiently computed using automatic differen-
tiation, and these quantities are plugged into the governing
equations. Residuals from this procedure are added up in a
‘physics loss’, which must be minimized to obtain a physic-
ally plausible function. Similarly, synthetic measurements can
be computed using the outputted flow fields and a measure-
ment model and then compared to real data, e.g. using any
of the Ldata expressions in equations (2), (4), and (7), each of
which constitutes a ‘data loss’. An aggregate loss, physics +
data, is minimized by a backpropagation algorithm to produce
a network that yields physical flow fields that reproduce the
observed particle trajectories.

7 See appendix A for an overview of alternative DA techniques, most of which
are compatible with SPAV.

For a simple PTV scenario, a suitable physics loss
can be constructed from the incompressible Navier–Stokes
equations, although the technology is easily extended to com-
pressible and reactive flows. These equations are written
in non-dimensional form and rearranged to obtain physics
residuals,

δ1 = ux+ vy+wz, (20a)

δ2 = ut+ uux+ vuy+wuz+ px

−Re−1 (uxx+ uyy+ uzz)− fx, (20b)

δ3 = ut+ uvx+ vvy+wvz+ py

−Re−1 (vxx+ vyy+ vzz)− fy, and (20c)

δ4 = ut+ uwx+ vwy+wwz+ pz

−Re−1 (wxx+wyy+wzz)− fz, (20d)

where (·)x, (·)y, (·)z, and (·)t are partial derivatives of the
PINN, Re is the Reynolds number, and f= [fx, fy, fz]T is a for-
cing term that is generally set to zero. A physics loss is con-
structed by integrating equation (20) over the measurement
domain,

Lphys =
1

|V ×T |

ˆ
T

˚
V

∥∥∥[δ1, δ2, δ3, δ4]T∥∥∥2

2
dxdydzdt. (21)

In this expression, V and T are the measurement volume and
interval, ∥·∥2 is the Euclidean norm, and the residuals δ1–δ4
are a function of (x,y,z, t) as well as the network’s weights and
biases, represented by the vector θ. In practice, equation (21)
is approximated by Monte Carlo sampling.

The final loss that we consider is a boundary condition. One
major advantage of PINNs when reconstructing a flow is that
boundary conditions are not always needed. However, adding
a boundary condition can improve the accuracy of reconstruc-
tions when the condition is well known and has a significant
impact on the phenomena of interest. Boundaries can be espe-
cially important in the context of PTV measurements of wall
bounded flows because the assumption of ideal tracers may
break down near the wall. We consider a surface boundary
condition,

Lbound =
1

|A×T |

ˆ
T

¨
A

∥∥∥[u,v,w]T∥∥∥2

2
dxdydt, (22)

where the region A corresponds to a no-slip wall that is coin-
cident with the z= 0 plane in our domain. This boundary con-
dition is used for the synthetic and experimental boundary
layer cases in section 4.

An overall objective loss is formed using the physics loss, a
suitable data loss, and a no-slip wall, where appropriate. In this
article, we assess the conventional, displacement-based loss in
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Figure 3. Architecture of a PINN for velocimetry. The neural network constitutes a functional representation of the flow, which can be used
to compute data, physics, and boundary condition losses. These losses are added up and minimized via backpropagation to obtain a realistic
function.

equation (2) and our approximations to the SPAV loss defined
by equation (7). The resultant loss is

Ltotal = Ldata + γphysLphys + γboundLbound, (23)

where γphys and γbound are regularization parameters that
must be carefully selected. The total loss is minimized by
tuning the PINN’s parameters, θ, with a backpropagation
algorithm. Fields outputted by a trained PINN represent a bal-
ance between the PTV measurements and flow physics.

We stress that PINNs are not essential to our framework.
SPAV can be used in conjunction with a physics loss to optim-
ize any differentiable, parametric representation of a flow.
Additional DA techniques are reviewed in appendix A. Non-
etheless, PINNs are a convenient tool for velocimetry because
they provide a parsimonious model of the flow and can be
implemented at a low computational cost, as we demonstrate
in section 4.

3. Benchmarking SPAV data loss approximations

The stochastic data loss defined in equation (7) is a com-
plex, nonlinear function of arbitrary localization and meas-
urement PDFs as well as the flow field parameters, θ. We
introduce three approximations to this loss, using ‘Monte
Carlo’ sampling, ‘MVN’ PDFs, and an ellipsoidal ‘fluid ele-
ment’, hereafter denoted ‘MC’, ‘MVN’, and ‘FE’, in that
order. In principle, the Monte Carlo technique will converge
to the true SPAV loss with a large number of samples; the
MVN model presumes Gaussian measurement and localiza-
tion PDFs, which could reduce the computational cost of our
technique; and in our FE approach, we accelerate this approx-
imation by only advecting a few particles, positioned along the
principal axes of the measurement PDF. Crucially, the num-
ber of samples needed for the MC and MVN methods and the
veracity of the assumptions undergirding MVN and FE were
not known a priori. Therefore, we assessed the accuracy and
cost of these losses before using them for velocimetry.

We numerically test our SPAV approximations using a dir-
ect numerical simulation (DNS) from Raissi et al [46]. The
flow is a 2D cylinder wake flow with a Reynolds number of
100. A subset of the flow with a non-dimensional size of 7× 5
and 201 timesteps is extracted for testing. We randomly seed

a thousand virtual particles at the initial frame. The particles
are modeled as ideal tracers, governed by equation (3), which
we implement using a second-order Runge–Kutta scheme and
periodic boundaries. To mimic localization uncertainties that
are characteristic of DIH-PTV, the observed particle positions
are corrupted with additive Gaussian errors of zero mean.
We assume a sensor positioned normal to the flow (aligned
with the y-axis) and adopt the experimentally-determined
uncertainties from Mallery and Hong [35], corresponding to
non-dimensional standard deviations of σx = 2× 10−3 and
σy = 5× 10−2 for our domain. These data are arranged into
particle tracks: each track continues until the particle exits the
domain, at which point a new track is formed at the opposite
boundary.

Next, we train a PINN on the DNS data to obtain an ideal-
ized model of the wake flow. In other words, this PINN is not
used to reconstruct the velocity or pressure fields but rather to
assess our SPAV approximations. The deep, fully-connected
network maps (x,y, t) inputs to (u,v,p) outputs with 15 lay-
ers having 250 neurons, each. Our data loss directly compares
velocity outputs to the DNS solution, and we set γphys to unity
in our objective loss. Training is conducted with the Adam
optimizer using data and physics batch sizes of 10 000 points
apiece; the optimizer is run at a fast learning rate of 10−3 for
5000 epochs, followed by a slow rate of 10−4 for another 5000
epochs, yielding a highly-accurate representation of the flow.
Velocity fields outputted by this PINN exhibit a maximum
error of 0.3% relative to the DNS fields. We use the result-
ant architecture to evaluate our SPAV approximations with the
noisy track data described above, meaning that θ is fixed at
a quasi-optimal point. Particle advection by the PINN is also
implemented with a second-order Runge–Kutta method.

Figure 4 shows a comparison of two single-particle MC,
MVN and FE log losses at a single instance. These particles
were selected from the near and far wake regions of the flow
to illustrate how local flow characteristics could affect our
approximations. For the MC and MVN losses, we conducted
100 tests with 10 000 random draws from the initial localiz-
ation PDF in each case. The thin lines in figure 4 convey the
results of one test, where the x-axis indicates the number of
draws included in the log loss calculation. By contrast, the FE
approximation requires only four particles in this 2D demon-
stration (six for 3D PTV), resulting in a constant estimate of
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Figure 4. Testing the SPAV approximations: (left) log losses from all three variants and (right) advected particle distributions. The Gaussian
distribution of particles becomes skewed in the near wake due to strong velocity gradients.

the log loss. The right-hand side of figure 4 shows the advec-
ted distribution of particles in both cases. Naturally, the MC
and MVN log loss estimates converge to a stable value with
an increasing number of samples. However, it should be noted
that convergence of the MVN distribution is barely faster than
the MC method, which is an acute disadvantage since the
MVN method relies upon strong assumptions about the meas-
urement and localization PDFs. We also note the important
trade-off between the number of samples,M, used to estimate
the log loss for a single particle and the number of particles,
N, used in a training batch, which are collectively limited by
memory. This constraint is important because the loss cal-
culations are less accurate for a low number of samples and
stochastic gradient descent becomes less effective as the batch
size decreases. For the tests reported in section 4, we use
M= 1000 draws and a batch size of N= 100 particles for both
MC and MVN. This ratio was found to provide a good com-
promise between the accuracy of our SPAV approximations
and stability of optimization.

Another detail that can be observed in figure 4 is the flow
dependence of our approximations. The MC, MVN, and FE
calculations agree in the far wake of the cylinder but differ
in the near wake. Moreover, convergence (or lack thereof)
corresponds to the spatial distribution of advected samples,
which is clearly non-Gaussian in the near wake. The cloud
of particles advected in this region is skewed and distorted
by strong velocity gradients in the flow (n.b., these gradi-
ents are meager compared to those of even weakly turbulent
flows). The banana-shaped near wake distribution of particles
is poorly modeled by a Gaussian PDF, which introduces an

error into the MVN estimate. The fluid element is adversely
affected by outliers and, as a result, the FE log loss is the least
accurate. However, these errors are not necessarily large, with
average and maximum errors of 0.8% and 3.3% of the range of
MC log losses for MVN and 1.1% and 10.4% for FE. There-
fore, we assess the utility of these approximations in section 4.

To quantify the normality of the distribution of advected
samples, we used the multivariate Shapiro–Wilk test [52].
In this test, one assumes that a distribution is normal and
calculates the corresponding P-value, i.e. the probability of
observing the target distribution assuming that it is indeed nor-
mally distributed. It is common practice to conclude that a dis-
tribution is not normal if the P-value falls below some critical
threshold, typically 0.05. We adopt this convention for illus-
trative purposes but acknowledge that there is nothing funda-
mental about the threshold. Figure 5(a) shows a random sub-
set of particles at a given instance; the red particles have a
P-value below 0.05 while the gray particles have a P-value
greater than or equal to 0.05. Figure 5(b) depicts P-values for
all the particles at the same instance versus |uyy|, i.e. the mag-
nitude of the second partial derivative of u in the spanwise
direction, which is the principle axis of measurement uncer-
tainty. Regions of the flow that exhibit velocity curvature yield
a non-Gaussian distribution of advected particles, indicating
that the MVN and FE techniques may perform poorly for tur-
bulent flows if the measurement interval is long. Nevertheless,
the next section demonstrates that both MVN and FE outper-
form the conventional data loss in accuracy, and the low cost
of the FE formulation facilitates faster learning than the more
accurate MC technique.
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Figure 5. Origins of non-Gaussianity: (a) advected particle positions overlaid on |uyy| and (b) Shapiro–Wilke P-values vs. |uyy|. Strong
gradients lead to non-Gaussian advected distributions.

4. Demonstrating SPAV for 4D DIH-PTV

While SPAV is applicable to any PTV modality, we demon-
strate its performance using DIH-PTV: a low-cost tech-
nique for high-resolution velocimetry that is used to measure
microfluidics [35], near wall flow [23], and burning particles
in flames [28], to name a few examples. In DIH, coherent light
scatters off a target object, resulting in an interference pattern
that is recorded by an imaging sensor (usually a CMOS array
for PTV applications). This information can be used to loc-
alize tracer particles in a flow and follow them to form Lag-
rangian tracks. Unfortunately, the DoF of a typical DIH sys-
tem leads to significant, anisotropic errors in the estimated
particle positions. The distribution of errors is elongated nor-
mal to the camera sensor, which can bias or otherwise obfus-
cate the tracks, thereby corrupting estimates of the velocity
and pressure fields. To compensate for this effect, DIH-PTV
practitioners have introduced a host of ad-hoc methods to reg-
ularize the tracks and improve the accuracy flow fields. These
methods tend to smooth-out the finer details of a flow and are
themselves a source of error. SPAV, by contrast, interprets the
unmodified particle tracks via models of measurement uncer-
tainty and the underlying flow physics. This synthesis yields a
marked improvement in the accuracy of 4D velocity and pres-
sure fields in PTV.

This section details a comprehensive evaluation of SPAV,
including its MC, MVN and FE variants, through the use
of three synthetic and two experimental DIH-PTV scenarios.
Further, a conventional data loss is tested in each case to
provide a baseline for comparison.

4.1. Measurement scenarios and implementation details

4.1.1. Synthetic cases. Three DNS data sets are used for
synthetic testing. The first flow is a laminar 3D cylinder wake
from Raissi et al [46]; the other two flows are subvolumes
of the forced isotropic turbulence and transitional boundary
layer data sets from the Johns Hopkins Turbulence Database
[53]. Hereafter, we refer to these cases as cylinder, isoturb, and

TBL, respectively. For the isoturb target, we select the central
643-cell subvolume of the DNS domain; the TBL features the
bottom layer of transitional turbulence, around a dimension-
less distance of 430 down the plate, from y+ = 0 to 126. The
cylinder, isoturb, and TBL tests are sustained for 201, 51, and
51 DNS frames, respectively.

Synthetic DIH-PTV data are generated in two steps, start-
ing with the creation of particle fields. First, to mimic a real
experiment, the DNS domains are dimensionalized. The fluid
is assumed to be water with a kinematic viscosity of 1 mm2

s−1. Virtual particles of diameter 8 µm are uniformly seeded
into the flow and ideally advected to determine their positions
over time. Advection is once again conducted with a second-
order Runge–Kutta scheme, subject to periodic boundary con-
ditions. Table 1 summarizes the key dimensionless (‘DNS’)
and dimensional (‘Dim.’) parameters of the synthetic tests.
Note that the Reynolds numbers are defined by the cylinder
diameter (cylinder), Taylor microscale (isoturb), and bound-
ary layer thickness and friction velocity (TBL).

The second step is to simulate holograms for our chosen
measurement setups. Following the common convention in
DIH, we align the z-axis of our measurement volume with the
camera’s optical axis, viz., the longitudinal direction. As a res-
ult, the largest component of localization uncertainty lies in the
z-direction. The hologram plane is coincident with the x- and
y-axes and is positioned 7 mm away from the center of the
domain. Flows are illuminated by a 633 nm laser that is posi-
tioned in-line with the camera. We use 8 mm sensors with two
different pixel pitches. For the cylinder and isoturb cases, we
specify an 800× 800 px sensor with 10µmpixels; for the TBL
case, we specify a 1600× 1600 px sensor with 5 µm pixels.
The sensor resolution is increased in the latter scenario to bet-
ter measure the particles’ wall-normal motion. In other words,
when an 800× 800 px sensor is used to measure this flow at a
practical frame rate, localization errors dominate genuine flow
structures.

We simulate holograms using Gao’s method [54], in which
the intensity field is enlarged by a factor of four with zero-
padding to avoid aliasing in the Fourier domain. Furthermore,
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Table 1. Key Parameters and dimensions of DNS Flows for Synthetic DIH-PTV Tests.

Case Re

Domain size Timestep

Velocity field No. particlesDNS Dim. (mm) DNS Dim. (s)

Cylinder 100 7× 5× 5 7× 5× 5 0.08 1/1250 71× 51× 51 1000
isoturb 433 π/8×π/8×π/8 8× 8× 8 0.002 1/6520 64× 64× 64 4000
TBL 430 6.70× 6.70× 1.46 8× 8× 1.74 0.25 1/2240 68× 68× 80 2000

Figure 6. Sample data from the synthetic forced isotropic turbulence case: (a) a synthetic hologram with an enlarged inset, (b) localization
PDFs (the x- and y-direction PDFs overlap almost completely), and (c) DIH-based particle tracks, colored by their mean velocity magnitude.
For clarity, the tracks are visibly corrupted by localization errors. Only 15% of the tracks are visualized.

each sensor is supersampled at four times its native resolu-
tion to mitigate discretization artifacts. An algorithm for gen-
erating multi-particle holograms is provided in appendix B.
Figure 6(a) shows a sample synthetic hologram from the
isoturb case. Due to the high seeding density, many particle
fringes overlap one another, increasing the difficulty of
localization.

4.1.2. Experimental cases. Two experimental flows are con-
sidered: laminar micro-channel and turbulent channel flow.
These experiments are briefly recapitulated below to facilitate
a discussion of our SPAV results. Full details of the laminar
test can be found in Toloui and Hong [55] and the turbulent
test is documented in Toloui et al [22].

In the micro-channel experiment, water is pumped through
a micro-channel using a motorized syringe. The flow is seeded
with 2 µm silver-coated fused silica particles to a concen-
tration of roughly 3000 particles mm−3. The micro-channel
has 0.15 mm glass walls and a 1 mm2 square cross-section.
Flow is maintained at a Reynolds number near 10 based on
the channel’s hydraulic diameter. The DIH system features a
2048× 1088 px CMOS camera, 633 nm HeNe laser, collim-
ated lens, and a spatial filter to shape the laser’s output into a
plane wave. The camera is equipped with a long working dis-
tance, infinity-corrected 5× objective lens to record a magni-
fied hologram at the outer wall of the channel. During meas-
urement, the camera is operated at a frame rate of 338 Hz with
a lateral resolution of 1.1 µm/pixel.

The second experiment is conducted within a refractive
index-matched (n= 1.41) turbulent channel flow facility at the

University of Minnesota, which has a 1.2 m long smooth-wall
acrylic channel with a 2500 mm2 square cross-section. The
channel is operated at a Reynolds number of 22 770, based
on its height, and the flow is seeded with silver-coated hol-
low glass tracers of diameter 8–12 µm.8 The DIH setup
is similar to that in the micro-channel test, except that a
1472× 1448 px high-speed camera, coupled with a Nikon lens
(105 mm and f /2.8), is used to record holograms with a resol-
ution of 10 µm/pixel at 3080 Hz. The camera is focused on
a plane around 3 mm away from the inner channel surface.
In the experiments, collimated laser light is shone through
the entire the channel, resulting in a large probe volume of
14.7× 14.4× 50.0 mm3.

4.1.3. Particle extraction and tracking. We employ the iter-
ative particle extraction technique of Toloui et al [22], briefly
summarized in appendix B, which is tailor-made for DIH-PTV
experiments that have a high particle count. Per the angular
spectrum method, our reconstructions maintain the same lat-
eral (i.e. x–y) resolution as the holograms [56]. Longitudinally,
we refocus the synthetic holograms onto 500, 800, and 200
planes for the cylinder, isoturb, and TBL cases, respectively,
using a constant spacing of 10 µm. To quantify the localiza-
tion PDF for SPAV, i.e. P(x|x̂) in equation (6), we compare
DIH-based particle positions to their ground truth (GT) coun-
terparts via nearest neighbor matching [55]. A sample local-
ization PDF from the isoturb case is plotted in figure 6(b).
The PDFs are well modeled as Gaussian, supporting the use

8 Reτ for the turbulent channel flow experiment is estimated to be 575.
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Figure 7. Sample data from the experimental micro-channel flow case: (a) an experimental hologram and (b) DIH-reconstructed particle
tracks, colored by their mean velocity magnitude. For clarity, only one-fifth of the tracks are visualized.

of MVN PDFs in SPAV. For the isoturb setup, the standard
deviation in the z-direction of 0.067 mm is appreciably larger
than the x- and y-direction standard deviations of 0.003 mm.

Given a sequence of particle clouds, we use the Crocker–
Grier algorithm to obtain Lagrangian tracks. Tracks with fewer
than four particles are discarded to avoid spurious matches,
since ghost particles rarely persist across multiple frames.
Reconstructed particle tracks from the isoturb case are plotted
in figure 6(c). These tracks feature strong fluctuations along
the z-direction, which is consistent with the asymmetric errors
that are emblematic of DIH. Flow fields are reconstructed by
directly feeding noisy tracks to a SPAV-enabled PINN or by
passing Lagrangian velocity estimates (i.e. from equation (1))
to a PINN with a conventional data loss.

Background subtraction must be applied to the exper-
imental holograms to enhance their signal-to-noise ratio
(SNR).We also crop themicro-channel holograms, leaving the
central 800× 400 px region, to avoid reflections from the glass
walls. Twenty consecutive frames of this flow are numerically
refocused onto 1000 longitudinal scans, separated by 1 µm
intervals. The turbulent channel case spans 40 frames; at each
frame, the entire hologram is refocused onto 1024 longitud-
inal scans with 56.5 µm spacing. The wall detection proced-
ure from [22] is implemented to eliminate ghost particles out-
side the channel. A sample background-subtracted hologram
from the micro-channel experiment is shown in figure 7(a).
Although similar to the synthetic hologram in figure 6(a), the
experimental one exhibits a lower dynamic range and hence a
lower SNR. Particle tracks extracted from the micro-channel
holograms are plotted in figure 7(b). These tracks are visibly
affected by longitudinal errors in the particle positions. Never-
theless, the bulk laminar pipe flow profile is readily apparent,
with fast flow along the center that slows towards the walls.

Experimental localization uncertainties must be estimated
to specify the SPAV data loss in each test. We thus con-
duct simulations that mimic the DIH system, particle con-
centration, and particle sizes from our tests. To account for
noise, we double the magnitude of uncertainties determined
by this procedure since previous works have shown that the
actual DoF in a DIH experiment is approximately twice that
of the corresponding synthetic test [55, 57]. As an alternative,

localization uncertainties can be experimentally characterized
via a controlled sample with embedded tracer particles, fixed
in place [24, 54].

4.1.4. Network architecture and training. All PINNs used
in this work are implemented in TensorFlow 1.15. Networks
employed for the laminar cylinder wake and micro-channel
flows are set up with ten hidden layers that have 50 neurons
per output variable; the networks used for turbulent flows con-
tain fifteen layers with 75 neurons per output variable. Swish
activation functions are selected in accordance with [58]. This
architecture is empirically chosen to ensure that the PINN is
expressive enough to represent the turbulent flows considered
in this work. Weights are randomly initialized with a stand-
ard normal distribution and biases are set to zero at the start.
Weightings of the loss term components in Ltotal are optim-
ized through a simple parameter sweep. Several sophisticated
schemes have been developed to automate the loss weights,
e.g. [59–61]. However, we find that adaptive techniques yield
marginal benefits in the presence of realistic noise [58, 62].

Training is performed using the Adam optimizer at a fast
learning rate of 1× 10−3 followed by a slow rate of 1× 10−4.
We use a particle batch size of 1× 104 for PINNs with a
conventional data loss (‘conventional PINNs’ for shorthand),
which are trained for 5000 epochs at the fast rate and 2000
epochs at the slow rate. Batch sizes for PINNs with a SPAV
loss (‘SPAV PINNs’, ‘MC PINNs’, etc) are limited by avail-
able GPU memory. We use a batch size of 100 particles for
the MC and MVN PINNs and 2000 particles for the FE PINN,
since that variant is much cheaper to implement. Networks
equipped with a SPAV loss are pre-trained with the conven-
tional data loss for 5000 epochs at the fast learning rate to
speed-up convergence. Next, the SPAV losses are employed
for training at the slow rate. Due to their smaller batch size,
the MC and MVN PINNs are only trained for 50 epochs at
the slow rate, while the FE PINNs is trained for 1000 epochs.
All of these schedules are sufficient to ensure convergence.
Training is conducted on an NVIDIA GeForce RTX 3090
GPU. The average computation time is around 10 hours for
a conventional PINN, 20 hours for MC and MVN PINNs, and
14 for an FE PINN.
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Figure 8. Exact and reconstructed cylinder wake flow fields (left) and absolute point-wise errors (right). The u- and v-velocity fields are
omitted since the reconstructions are of similar quality.

4.1.5. Errors. Reconstruction errors are computed in terms
of the fluctuating component of a Reynolds decomposition,
ϕ = ϕ+ϕ ′, where ϕ is the variable of interest, ϕ is the
ensemble average of ϕ at (x,y,z, t), and ϕ ′ is the fluctuating
component of interest. Errors are averaged over the measure-
ment domain,

⟨ϕ⟩= 1
|V|

˚
V
ϕ dxdydz. (24)

Normalized root-mean-square errors (NRMSEs) of the fluctu-
ating component at a given instance are calculated as follows:

eϕ =


〈
(ϕ ′ −ϕ ′

exact)
2
〉

〈
ϕ ′ 2
exact

〉
1/2

. (25)

Time-averaged NRMSEs are denoted eϕ.

4.2. Synthetic results

4.2.1. Laminar cylinder wake. We first present the results
of our cylinder wake flow test. Figure 8 compares the exact
DNS data to reconstructed flow fields from conventional and
MC SPAV PINNs. Velocity and pressure fields are extracted
at the central snapshot and rendered on the x–z midplane of
the probe volume, perpendicular to the cylinder (itself aligned
with the y-axis). Qualitatively, both the SPAV and conven-
tional PINNs can recover the velocity and pressure fields to
high accuracy, as evinced by the clear von Kármán vortex
street and elevated pressures within the vortex cores. To better
illustrate SPAV’s performance, point-wise absolute errors are
plotted on the right side of figure 8. Use of the conventional
data loss leads to pronounced errors in the velocity fields, espe-
cially thew-component due to the low longitudinal accuracy of
DIH. Moreover, these velocity errors limit the accuracy of the
pressure field. By contrast, the SPAV results exhibit far lower
errors throughout the domain. This illustrates the benefit of
incorporating localization and measurement uncertainties into
the reconstruction algorithm.

The top row of figure 9 depicts instantaneous velocity and
pressure traces along the central x-axis (y= z= 2.5 mm) of

the central snapshot for all three SPAV variants as well as the
conventional data loss. We observe that SPAV reconstructions
are consistently closer to the ‘GT’ DNS data than the conven-
tional estimates. Of the SPAV variants, MC yields the most
accurate fields. Several large deviations are observed in the
MVN and FE reconstructions in the near-wake region of the
flow because these losses assume that the advected PDF is
Gaussian, which is invalid in the presence of strong velocity
gradients, as demonstrated in section 3. To better quantify rel-
ative performance, we calculate NRMSEs for the reconstruc-
ted fields at each frame, which are plotted in the top row of
figure 10. Use of the MC data loss reduces errors across all
fields by roughly 50%, exceeding 5% points in some cases.
The conventional, MVN, and FE losses exhibit comparable
accuracy for the u- and v-components of velocity (again, due
to the assumption of Gaussian PDFs).

4.2.2. Forced isotropic turbulence. Next is the forced iso-
tropic turbulence, or isoturb, case. TheDNS includes a force to
compensate for energy dissipation in the flow [63]. We tested
isoturb reconstructions with f= 0; however, while this pro-
duced accurate estimates of velocity, the quality of unforced
pressure reconstructions was poor. Therefore, we include a lin-
ear force in the physics loss for all our isoturb tests,

f=
ε

3u2rms
u, (26)

where ε is the mean energy dissipation rate and urms is the
root-mean-square velocity. Note that, although this procedure
is valid for the isoturb simulation, it is not suitable for most
experimental flows.

Figure 11 shows cut plots of velocity and pressure from the
DNS as well as the conventional and MC SPAV PINNs. Cuts
are taken at the bottom (z= 0 mm), rear (y= 8 mm), and right
(x= 8 mm) face of the cubic domain. Reconstructions from
the conventional and SPAV PINNs are qualitatively similar to
the DNS fields. Still, there are discernible differences in (1)
the w-component of velocity, where conventional estimates
are severely distorted by PTV localization errors, and (2) the
pressure field, where the conventionally-trained PINN under-
estimates the magnitude of fluctuations. Absolute errors are
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Figure 9. Instantaneous cut plots of velocity and pressure along the central x-axis of the domain from the conventional PINN and all three
SPAV variants: (top) cylinder case, (middle) isoturb case, and (bottom) turbulent boundary layer case. Color coding: ‘ ’ for ground truth,
‘ ’ for conventional, ‘ ’ for MC, ‘ ’ for MVN, and ‘ ’ for FE.

Figure 10. Comparison of velocity and pressure NRMSEs across all frames for the conventional PINN and all three SPAV variants. Color
coding: ‘ ’ for ground truth, ‘ ’ for conventional, ‘ ’ for MC, ‘ ’ for MVN, and ‘ ’ for FE.

plotted on the right side of figure 11. Once again, SPAV signi-
ficantly reduces errors in the velocity and pressure fields. This
reduction in error corresponds to more accurate flow derivat-
ives and vortex detection. As an example, figure 12 compares
Q-criterion isosurfaces computed on the GT velocity field
and our DIH-PTV reconstructions. Velocity fields produced
by a SPAV PINN contain denser coherent structures that are

visibly more accurate than the structures from conventionally-
obtained velocity fields.

Similar to the cylinder flow case, quantitative assessments
are conducted by comparing velocity and pressure distribu-
tions along the central x-axis (y= z= 4 mm) in figure 9. The
MC data loss yields the best reconstructions due to its accurate
approximation of the advected PDF, followed by the MVN,
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Figure 11. Exact and reconstructed cylinder wake flow fields (left) and absolute point-wise errors (right).

Figure 12. Coherent structures in forced isotropic turbulence from conventional and SPAV PINNs. Structures are visualized using
isosurfaces of the Q-criterion (Q= 8500 s−2) colored by the velocity magnitude.

FE, and conventional PINNs in that order. NRMSEs of the
estimated velocity and pressure fields across all frames are
presented in figure 10, where the MC technique is shown to
halve the reconstruction errors compared to a conventional
PINN. An extended sensitivity analysis of the isoturb case that
features several distributions of measurement uncertainty is
provided in appendix C.

4.2.3. Transitional boundary layer. The last and most chal-
lenging synthetic test is the transitional boundary layer case,
i.e. TBL. Here, we measure the bottom layer of flow and

our imaging axis is aligned with the wall normal direction
(z-axis). Similar optical setups have been used in real exper-
iments to resolve near-wall flow from backscatter digital
holograms [64].

Although the Reynolds number is similar in the isoturb and
TBL scenarios, the boundary layer features three unique chal-
lenges. First, resolving fine flow structures in a thin volume
requires high longitudinal accuracy. As such, we use a high-
resolution sensor (1600× 1600 px) to reduce longitudinal
uncertainties, although this comes at a significant computa-
tional cost. Second, the thin region limits the allowable particle
concentration, beyond which the Crocker–Grier algorithm
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Figure 13. Exact and reconstructed boundary layer flow fields (left) and absolute point-wise errors (right).

Figure 14. Coherent structures in a transitional boundary layer from conventional and SPAV PINNs. Structures are visualized using
isosurfaces of the Q-criterion (Q= 9450 s−2) colored by the velocity magnitude.

encounters a combinatoric explosion in candidate particle
matches [34]. However, while tracking becomes easier with
fewer particles, velocity and pressure field reconstructions are
adversely affected by a low seeding density. We found the
optimal number of particles for our TBL test to be around 2000
through trial and error. This challenge highlights the potential
benefits of an advanced tracking algorithm for DIH-PTV that
can accommodate dense particle fields. Development of such
an algorithm is beyond the scope of this work, however. The
third challenge pertains to the strong velocity gradients at the
wall, leading to a large number of non-Gaussian PDFs that are
inconsistent with the MVN and FE losses. As a result, we only
assess the MC variant of SPAV for this case.

Figure 13 compares cut plots of the transitional boundary
layer. The figure shows three orthogonal planes: a quarter-
height (z= 0.43 mm), rear (y= 8 mm), and left (x= 8 mm)
plane. Velocity and pressure fields and errors are shown on the
left- and right-side of the figure. The SPAV and conventional
PINNs generate qualitatively similar flow fields. Slight differ-
ences are apparent in the u- and v-components of velocity as
well as the pressure field. Absolute errors help to illustrate the
benefit of a SPAV loss for this flow, especially along the side
of the domain. Further, figure 14 shows GT and reconstructed

vortical structures based on the Q-criterion. As in the isoturb
case, our SPAV method recovers a richer set of more accurate
coherent structures than can be accessed with a conventional
data loss.

To quantify the ability of conventional and SPAV PINNs
to resolve the boundary layer, we plot the mean profiles of
velocity in the wall normal direction, averaged over x, y, and
t, along with the corresponding errors. Results can be seen in
figure 15. SPAV profiles neatly follow the DNS data, exhibit-
ing lower errors than the conventional profiles throughout the
boundary layer. This is especially true of the w-component
profiles: the conventional PINN violates the no-slip condi-
tion at the wall, while our SPAV PINN adheres to this con-
dition. Note that both PINNs include a no-slip penalty, per
equation (22), but the conventional data loss is far more sus-
ceptible to longitudinal errors from a DIH system, leading to
non-physical reconstructions.

As in the cylinder and isoturb results, we compare distri-
butions of velocity and pressure in the TBL flow along the
central x-axis (y= 4 mm, z= 0.86 mm) in figure 9 as well
as NRMSEs across all the frames in figure 10. Only MC res-
ults are shown for SPAV in the TBL case, these results closely
resemble theGTDNSfields and exhibit errors up to 50% lower
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Figure 15. Mean velocity distributions (top) and errors (bottom) along the wall normal direction in the transitional boundary layer flow
from the conventional and SPAV PINNs.

than those from the conventional PINN. Taken together, the
cylinder, isoturb, and TBL results provide strong quantitative
and qualitative evidence that stochastic particle advection can
enhance the accuracy of PTV in the presence of anisotropic
measurement uncertainties.

4.3. Experimental results

Following our synthetic tests, we demonstrate SPAV on two
experimental data sets that feature a canonical flow: laminar
micro-channel [55] and turbulent channel [22] flow. Results
from our simulated studies may be used to understand the abil-
ity and limitations of the conventional and SPAV data losses
in these tests.

4.3.1. Laminar micro-channel flow. We first present the res-
ults of our micro-channel test. Due to poor particle reconstruc-
tions close to the front and back walls of the micro-channel,
we limit our reconstructions to the central 0.9mm region of the
channel, from z= 0.05 mm to 0.95 mm. Since this flow is fully
developed within the measured region of the micro-channel, it
corresponds to Poiseuille flow and should exhibit a parabolic
streamwise velocity profile with no transverse motion.

Instantaneous streamwise velocity profiles obtained by dif-
ferent methods are compared with the analytical solution
on figure 16(a). These profiles are extracted along the cent-
ral spanwise axis (x= 4.4 mm, y= 2.2 mm) in the central
frame and normalized by the maximum streamwise velo-
city, umax = 5.3 mm s−1. This value is the ensemble aver-
age of the central streamwise velocity from the MC PINN.
Estimates of umax from the other PINNs are within 2% of
this value. The reconstructed velocity profiles in figure 16(a)
closely match the analytical profile. Velocity errors are shown
in figure 16(b), which indicates a maximum discrepancy of
6%, similar to that reported in the original work of Toloui and
Hong [55]. Slight differences between these results are attrib-
uted to localization uncertainties and non-ideal experimental

conditions, e.g. the cross-section shape, unsteady pumping,
etc. Not shown in this figure are the transverse compon-
ents of velocity. Mean values of [|v|, |w|]/umax—which should
equal zero—are [0.019,0.018], [0.018,0.019], [0.017,0.020],
and [0.010,0.009] for the conventional, FE, MVN, and MC
PINNs, respectively.

Further quantitative analysis may be performed for the
pressure field. The streamwise pressure gradient in fully-
developed pipe flow is an analytical function of umax,

dp
dx

=−µumax

D2
H

, (27)

where µ is the dynamic viscosity and DH is the hydraulic
diameter of the channel. Figure 16(c) compares the analyt-
ical pressure field (up to a constant offset) to instantaneous
estimates from the conventional and SPAV PINNs. All profiles
are centered, and 3D pressure field estimates from the PINNs
are averaged across spanwise (y–z) planes to obtain a stream-
wise pressure drop profile. The conventional data loss yields
the least accurate result, followed by the FE, MVN, and MC
SPAV losses in that order. These PINNs estimate a pressure
gradient of 0.107 Pa mm−1, 0.097 Pa mm−1, 0.088 Pa mm−1,
and 0.084 Pa mm−1, compared to the analytical value of
0.085 Pa mm−1. Note that the conventional PINN overestim-
ates the pressure drop by 26% for this flow. This overestima-
tion is largely produced by the inaccurate (i.e. non-zero) estim-
ates of spanwise velocity. By contrast, the PINN trained with
an MC data loss faithfully captures the analytical gradient,
with only a small error of roughly 1%. This demonstrates the
value of SPAV for obtaining a correct estimate of velocity from
experimental PTV tracks.

4.3.2. Turbulent channel flow. Lastly, we use our SPAV
framework to reconstruct a turbulent channel flow from exper-
imental holograms. A major challenge here is the large lon-
gitudinal dimension of the domain (50 mm), resulting in
DIH reconstructions with low longitudinal resolution (50 µm),
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Figure 16. Velocity and pressure distributions from a DIH-PTV micro-channel flow experiment: (a) instantaneous streamwise velocity
profiles obtained by different methods vs. the analytical Poiseuille profile, (b) streamwise velocity error profiles, and (c) streamwise
pressure drops estimated by different methods versus the analytical solution. Color coding: ‘ ’ for ground truth, ‘ ’ for conventional, ‘ ’
for MC, ‘ ’ for MVN, and ‘ ’ for FE.

Figure 17. Results of a DIH-PTV turbulent channel flow experiment: (a) particle tracks and coherent structures and (b) mean streamwise
velocity profiles. One-tenth of the whole tracks are visualized for clarity. Vortical structures (left) are rendered with Q-criterion isosurfaces
(Q= 6.6 s−2) obtained with a conventional PINN (middle) and SPAV PINN (right). Surface color represents the flow velocity magnitudes.
Spalding’s wall function and Toloui’s data [22] are plotted with the PINN results for reference.

which is limited by available CPU memory. Coarse longitud-
inal resolution exacerbates particle localization errors, lead-
ing to poor quality particle tracks. Figure 17(a) shows a subset
of the tracks from this test, which contain strong longitudinal
perturbations and even erroneous matches across consecutive
frames. Such errors pose serious problems for PTV reconstruc-
tion algorithms.

We estimate velocity and pressure fields in this turbulent
channel flow using PINNs with a conventional PINN and
SPAV data loss. Only the MC variant is implemented for this
case due to the strong velocity gradients. To visualize vor-
tical structures in the channel, isosurfaces of the Q-criterion
are also plotted in figure 17(a). Coherent structures from
the SPAV reconstruction are elongated along the streamwise
wall-normal direction, growing towards the outer layer with a
inclination angle of 30◦–60◦. These structures are consistent
with past numerical and experimental studies of zero-pressure
gradient smooth-wall turbulent boundary layers [65–68]. By

contrast, structures produced by the conventional PINN are
totally corrupted by the large localization errors, showing high
connectivity across the whole channel. These results lend cre-
dence to the velocity fields obtained using our SPAV loss.

Next, we examine the velocities fields by invoking the law
of the wall, which describes the quasi-universal mean velocity
profile of turbulent wall-bounded flows. Figure 17(b) com-
pares the mean streamwise velocity profile, averaged across
40 frames (corresponding to a time span of 13 ms), from the
MC and conventional PINNs, and Spalding’s wall function is
plotted for reference. We calculate the friction velocity to be
uτ = 23mm s−1 using a logarithmic fit to themean streamwise
velocity profiles from z= 0 mm to 6 mm [22]; the correspond-
ing wall unit is roughly 43.5 µm. Results from the original
work by Toloui et al [22] are also provided for comparison. It
should be noted that the original DIH-PTVworkflow in [22] is
different from our approach in two key aspects. First, Toloui
et al utilized a modified multi-pass Crocker–Grier algorithm
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with track smoothing to improve the density and accuracy of
tracks, whereas we use the vanilla Crocker–Grier technique.
Second, the original work employed a two-step approach to
velocity reconstruction: (1) a Taylor series-based interpolation
of the unstructured PTV velocity fields onto 3D grid points
followed by (2) a continuity-based velocity refinement. Con-
versely, this work uses PINNs to reconstruct the flow from
noisy tracks with either a SPAV or conventional data loss.

We draw two major conclusions from figure 17(b). First,
despite the use of error-laden tracks from a generic tracking
algorithm, both the conventional and SPAV PINNs approx-
imately resolve the near-wall flow profile within the viscous
sub-layer. The earlier procedure from Toloui et al [22] barely
resolved the buffer layer, despite using more accurate tracks.
This speaks to the power of PINN-based DA for reconstruct-
ing flows, owning to a PINN’s continuous, functional repres-
entation of the target flow. Second, the conventional PINN
slightly underestimates the mean velocity in the outer layer.
This may be attributable to over-smoothing of the flow to
combat substantial errors in the Lagrangian tracks. Therefore,
taken together with the laminar experiment, this test demon-
strates the ability of our SPAV framework to improve velocity
and pressure estimates in PTV despite significant localization
and tracking errors.

5. Conclusions and outlook

This work presents a technique for DA, termed SPAV, to
improve the accuracy of Eulerian fields extracted from PTV
measurements. Our approach incorporates an explicit particle
advection model into a statistical data loss term, which
accounts for arbitrary localization and tracking uncertainties.
The data loss is combined with the governing physics to recon-
struct velocity and pressure fields from Lagrangian particle
tracks. Three numerical approximations to the SPAV loss are
designed for practical use: Monte Carlo, MVN, and fluid ele-
ment SPAV, each having a unique level of accuracy and com-
putational efficiency. SPAV is deployed using a PINN, which
simultaneously minimizes a set of measurement, physics, and
boundary losses. We demonstrate the technique using simu-
lated and experimental holograms from DIH PTV tests. How-
ever, SPAV is a general framework that can be applied to all
forms of PTV and may be incorporated into other DA solvers,
e.g. state observer methods, Kalman filters, adjoint-variational
codes, etc. Several important conclusions can be drawn from
this work.

1. Given noisy Lagrangian particle tracks, a SPAV data loss
can improve the accuracy of velocity and pressure field
estimates compared to a conventional velocity loss. In our
synthetic tests, SPAV reduced velocity and pressure errors
by an average of 50% and 30%, respectively. Furthermore,
in our laminar experiment, the pressure drop estimated by
SPAV was within 1% of the analytical value, as compared
to the conventional PINN, which was off by 26%.

2. By using the fewest approximations, the MC vari-
ant of SPAV consistently produces the most accurate

reconstructions, irrespective of the flow characteristics.
Meanwhile, the MVN and FE techniques only provide
marginal improvements over the conventional data loss for
turbulent flows, in which strong velocity gradients generate
non-Gaussian advected particle PDFs.

3. SPAV also enhances the accuracy of flow derivatives
compared to a conventional workflow. In our simulated
and experimental tests, alike, SPAV-based coherent struc-
tures (viz., isosurfaces of the Q-criterion field) were more
detailed and accurate than those obtained with a standard
velocity loss.

Ultimately, SPAV provides a pathway to extract more
accurate high-order derivatives, statistics, and structures of
turbulent flows from experimental PTV data. Quantities of
interest may include Reynolds stresses, dissipation rates,
and coherent structures, which can potentially provide new
insights into turbulence.

We have identified several avenues for future research to
stabilize, validate, and enhance the performance of SPAV.

1. The speed and domain size of PINN-based SPAV can be
increased through GPU parallelization and domain decom-
position, for instance, using an extended PINN [69]. The
enhanced expressivity of an extended network could help
practitioners to resolve finer scales in an intense turbulent
flow.

2. Inertial effects could be incorporated into the PAV or SPAV
framework to account for non-ideal PTV measurements in
extreme scenarios, such as cases with non-negligible ther-
mophetic or drag forces.

3. Lastly, the SPAV framework can be leveraged to improve
the accuracy of other PTV techniques, including con-
ventional multi-camera, plenoptic, and SA PTV. Fur-
ther, SPAV can be combined with high-fidelity DA tech-
niques like adjoint–variational methods, as reviewed in
appendix A.
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Appendix A. Review of DA for PIV and PTV

This appendix briefly reviews DA techniques that have been
applied to PIV and PTV. DA confers several benefits. First,
physical constraints are enforced—albeit weakly, in some
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cases—which serves to enhance the spatio-temporal resolu-
tion of estimates and suppress noise. Second, latent (i.e. not-
directly-measured) state variables can be inferred from the
measurements, for instance, estimating pressure from particle
image data and thereby providing richer insight into the flow.
Third, when using a high-fidelity solver, the flow may be
faithfully simulated beyond the measurement horizon, called
forecasting, e.g. to resolve key statistics. This review groups
DA techniques for particle-based velocimetry into four cat-
egories: observer methods, adjoint methods, physics-informed
interpolation, and physics-informed machine learning. The
former two categories are often regarded as ‘measurement-
enhanced simulation’ while the later two are better thought of
as ‘physics-enhanced post-processing’.

To the best of our knowledge, every demonstration of DA
for PIV and PTV to date has featured a naïve comparison of the
measured and predicted velocity fields. Embedding an expli-
cit advection model like SPAV into a DA algorithm has the
potential to improve the accuracy of all the techniques repor-
ted below.

A.1. Observer methods

Observer methods employ a control theoretic framework and
treat the flow as a dynamical system whose states—namely,
velocity, pressure, and other fields—are estimated with a
numerical model. This model is tuned by the ‘observer’ to
match experimental measurements. Observer DA begins with
an approximate initial flow state, which is evolved using a
CFD simulation to predict future states. Real measurements
of the flow are compared to synthetic data, generated from
the predicted states, and discrepancies between the measured
and modeled data are used to construct a feedback signal.
Subsequent flow state predictions incorporate this feedback to
minimize the measurement residuals with the goal of repro-
ducing true states of the flow. Two leading observer methods
that have been used for PIV and PTVDA are the state observer
method [70] and Kalman filter (KF) method [71], designed for
deterministic and stochastic systems, respectively.

State observers directly estimate flow states with a CFD
algorithm that has been modified to incorporate feedback.
Design of the feedback mechanism is a key aspect of these
algorithms. A common approach is to specify a force in
the momentum equations, formulated in terms of residuals
between the CFD-based velocity fields and PIV data, to reduce
the residuals at future timesteps [72, 73]. Given an appropri-
ate feedback mechanism, this procedure yields flow fields that
gradually approach the true state, at which point the feed-
back signal should vanish. In an early example, Hayase and
Hayashi [74] used a state observer to reconstruct synthetic tur-
bulent flow in a square duct. Residuals between the predicted
and ‘measured’ velocity fields were used to drive the pres-
sure boundary conditions with a proportional controller. Later,
Imagawa and Hayase [75] implemented a state observer to
reconstruct synthetic turbulent flows in a duct. Their feedback
comprised a force in the momentum equations that was pro-
portional to the velocity residuals. More recently, Saredi et al
[73] incorporated a state observer into a Reynolds-averaged

Navier–Stokes (RANS) model using time-averaged tomo-
graphic PIV data; they successfully reconstructed the turbulent
flow fields around a wall-mounted bluff body. State observers
are relatively cheap and simple to implement and hence attract-
ive for aerodynamic design and optimization problems [76].
However, the deterministic framework only works well with
high-fidelitymeasurements.Moreover, design and implement-
ation of the feedback mechanism is largely heuristic, lacking
a strong theoretical foundation.

In KF DA, the flow is conceived as a stochastic system.
Flow fields are treated as random variables that are character-
ized by PDFs, which encode one’s state of knowledge about
the fields. The basic framework is similar to a deterministic
observer, except that the CFD model is used to predict both
the state estimate and its covariance (uncertainty), which are
incorporated into the updated state via a Kalman filter. The
simplest KF techniques are limited to linear models and Gaus-
sian PDFs, but most flow problems are high-dimensional, non-
linear, and may exhibit non-Gaussian uncertainties, especially
in the context of turbulence [77]. Several KF variants have
been developed to tackle these problems, such as the exten-
ded KF and ensemble KF (EKF and EnKF). For instance,
Suzuki [78] designed a reduced-order EKF algorithm to assim-
ilate 2D PTV measurements of a planar jet with a DNS. The
authors devised a cheap, linear approximation to the covari-
ance matrix, which only holds for weakly nonlinear systems.
By contrast, EnKFs can approximate arbitrary distributions by
propagating an ensemble of perturbed states through the full
nonlinear dynamical model. Hence, nonlinear effects on the
system statistics are properly resolved. Several works have
demonstrated EnKF for flow DA. Deng et al [79] utilized
EnKFwith a RANSmodel to recover the flow field of a 2D tur-
bulent jet from time-averaged PIV data. The EnKF-optimized
RANS parameters led to a more accurate simulation of the real
flow. Mons et al [80] employed a modified EnKF, called an
‘ensemble Kalman smoother’, to reconstruct unsteady 2D cyl-
inder wakes from sparse synthetic velocity data with a DNS
model. The authors compared this approach to variational DA,
showing similar performance at a much lower computational
cost and model complexity. Nevertheless, most demonstra-
tions of KF DA for 2D velocimetry to date have been con-
ducted with an EnKF. For 3D turbulent flows, a large number
of ensemble members, i.e. CFD runs, is required to reliably
approximate the system statistics, posing a significant compu-
tational cost.

A.2. Adjoint methods

Adjoint-variational DA algorithms seek the solution to a con-
strained optimization problem. In the context of fluid flow,
the objective loss is a scalar that may compare a wide range
of measured and modeled data, e.g. Lagrangian tracks from a
PTV system, pressure traces from a series of taps, wall shear
stress estimates from images of a stress sensitive coating, and
so on. The flow is parameterized in terms of a control vector,
such as the initial state of all the fields and/or time-resolved
boundary conditions, which usually has a large number of
dimensions [81]. The control vector is employed in a forward
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CFD simulation, which ensures that the resulting flow fields
satisfy the governing equations. Simulated flow fields are used
to estimate synthetic data, which are compared to real meas-
urements via the loss. This approach provides greater flex-
ibility than observer methods, which generally require a dir-
ect relationship between measured signals and computed flow
fields.

In adjoint optimization, one computes the sensitivity of
the objective loss with respect to the control vector. To do
this, another set of equations, called the adjoint equations,
are derived using Lagrange multipliers to convert the original
constrained problem into an unconstrained one [81]. Solv-
ing the adjoint equations is akin to a reverse simulation, and
the adjoint solution can be used to calculate the gradients of
interest. The control vector is then updated by steepest descent,
i.e. stepping down the objective surface along the gradient.
This forward-adjoint-gradient descent cycle is repeated until
an optimum is reached. Unlike observer methods, each step
of an adjoint-variational DA algorithm produces flow fields
for the full time horizon of an experiment, which can improve
accuracy and facilitate forecasting: simulating the flow beyond
the measurement interval [82].

Although originally developed for meteorological applic-
ations like weather prediction [83], adjoint-variational solv-
ers have been extensively applied to fluid dynamics prob-
lems in engineering. Early works include the reconstruction of
2D cylinder wakes from PIV measurements, based on either
a DNS [84] or RANS simulation [85]. However, extending
this approach to fully 4D variational DA (4DVar) comes at
an exorbitant cost due to the repeated forward and back-
ward DNSs [82, 86, 87]. To address the high cost of 4DVar,
Chandramouli et al [82] reduced the simulation’s spatial res-
olution by introducing a dynamic error term associated with
the unresolved scales (essentially a subgrid closure). Chan-
dramouli’s algorithm was validated with synthetic 3D PIV
measurements of a turbulent cylinder wake flow, showing
promise for real experiments. Another strategy to reduce the
cost of 4DVar involves lowering its temporal resolution, as
proposed by He et al [86, 87]. A time domain decomposition
is performed and 4DVar is applied sequentially across the tem-
poral subdomains. The authors solve the forward equations at
all timesteps, as in conventional CFD, but they also conduct
an adjoint loop and optimization in subdomains where meas-
urement data is present. In this case, the control vector is a
forcing term added to the momentum equations. He et al val-
idated their sequential 4DVar technique by estimating velocity
and pressure fields in a circular jet with experimental tomo-
graphic PIV measurements. Their demonstration constitutes
one of the only 4DVar tests with experimental data. However,
their reconstructions were only piece-wise continuous, and the
flow estimates exhibited nonphysical jumps across the tem-
poral subdomains.

Despite continuing efforts to develop 4DVar, its applica-
tion to highly turbulent flow remains a challenge because the
adjoint model fails to estimate useful gradients when the sys-
tem is too chaotic [88]. Advanced methods like least squares
shadowing [89] have been developed and show potential to
tackle this problem.

A.3. Physics-informed interpolation

Physics-informed interpolation is used to fill-in coarse PIV
data or sparse PTV tracks. In these algorithms, interpolation
is subject to soft constraints like a divergence penalty [90,
91] or loss derived from the incompressible Navier–Stokes
equations [41, 92]. Often, a continuous representation of the
flow is implemented using splines or radial basis functions,
whose coefficients are obtained from an optimization proced-
ure. Different from the observer or adjoint–variational meth-
ods, interpolation techniques do not rely on a CFD model to
predict flow states. Instead, these states are projected onto the
chosen basis from measured data and optimized by penaliz-
ing large deviations from the data and governing equations.
Consequently, interpolation-based DA tends to be cheaper and
faster than observer, adjoint, and machine learning methods. It
should also be noted that there are many techniques for estim-
ating pressure from PIV or PTV data that do not attempt to
improve the reconstructed velocity field (see [93] for a recent
example). However, this section is focused on algorithms
that utilize physics to enhance Eulerian estimates of
velocity.

Two popular interpolation schemes that are actively used
and developed by the PTV community are FlowFit [13, 40]
and VIC+ [41, 94]. The original formulation of FlowFit takes
time-resolved PTV tracks as input and outputs more accur-
ate, space-filling velocity and pressure fields. These fields
are represented by a 3D B-spline basis. The objective loss
comprises (i) the disparity between measured and interpol-
ated velocity and acceleration data—the latter of which can
be inferred from the momentum equations as well as the
particle tracks—and (ii) the aggregate divergence of the velo-
city and Eulerian acceleration fields. VIC+ uses the same
inputs but only outputs a velocity field, which is suppor-
ted by radial basis functions. In VIC+, the vorticity and
acceleration fields are deduced from the vorticity transport
equation. Both methods culminate in a nonlinear optimiza-
tion problem that can be minimized by established algorithms,
e.g. the limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm. Note that, although VIC+ employs a continuous
basis to represent the field variables, derivatives thereof are
calculated by projecting the fields onto a Cartesian grid and
applying finite differences. By contrast, partial derivatives of
a PINN and FlowFit are exact, analytical derivatives of the
neural network and B-spline basis functions, respectively. Fur-
thermore, existing formulations of FlowFit and VIC+ assume
that the flow is incompressible.

Recent developments of FlowFit andVIC+ help to promote
temporal smoothness. Previous versions only utilized snapshot
measurements and lacked temporal consistency. FlowFit now
incorporates artificial Lagrangian tracers (virtual particles),
which are seeded into the domain and advected between
timesteps to facilitate temporal coupling [95, 96]. These
artificial tracers constrain the material derivative in under-
sampled regions of the flow, thereby suppressing nonphysical
acceleration events. Key modifications to VIC+ include the
‘time-segment-assimilation’method, which estimates velocity
data from full particle tracks. The flow is evolved forward
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and backward via the incompressible, inviscid vorticity trans-
port equation, and a total cost function—comparing measured
and modeled velocity fields over the entire time horizon—
is minimized to recover velocity data at the central frame
[97].

It should be noted that the advection of artificial tracers
in the modified FlowFit algorithm is distinct from PAV. In
FlowFit, tracers are advected by the instantaneous velocity
field estimate at one timestep to inform the following estim-
ate, and this is repeated for subsequent timesteps. The result is
a series of 3D inverse problems. By contrast, in PAV, we per-
form particle advection and flow optimization simultaneously
across the entire time horizon, which amounts to a 4D inverse
problem.

A.4. Physics-informed machine learning

There has been a rapid uptake in the use of machine learning
to interpret measurements and assimilate them with a phys-
ical model. Many researchers train deep neural networks to
denoise or improve the resolution of sparse PIV or PTV data,
e.g. [98–101]. This is usually done with a supervised model
in a purely data-driven manner, which requires a large, high-
fidelity, and accurately labelled training set. As a corollary,
these techniques do not always perform well on novel data
sets. It is thus necessary to incorporate physics into the DA
process to develop a generalizable machine learning method
for PTV.

Physics-informed machine learning was recently estab-
lished as a robust, physics-based approach to functional
regression [46, 50]. The technique, described in detail in
section 2.4, employs a deep neural network to approximate
flow fields in functional form. The function, defined by the net-
work’s weights, biases, activation functions, and architecture,
maps spatio-temporal coordinates to the flow fields of interest.
Derivatives of the PINN are used to evaluate the governing
equations as well as predict measurements of the flow. Resid-
uals from the equations are added up in a physics loss and syn-
thetic data from the PINN are compared to real measurements
in a data loss; these losses may be augmented with boundary
condition losses where applicable. Lastly, an aggregate loss is
minimized by backpropagation to yield a function that approx-
imately satisfies physical laws and replicates experimental
measurements.

While PINNs can be used to solve well-posed forward
problems, they are especially useful in the context of inverse
analysis [50].9 Numerous papers have shown the potential of
PINNs to regularize reconstructions and recover latent states
of a flow [58, 62]. Some noteworthy examples of PINN-based
velocimetry have come from Han and coworkers [48], who
tested flow around a car’s side mirror using LaVision’s 4D
Lagrangian robotic PTV system; Di Leoni et al [102], who
reconstructed the shear layer behind a backward-facing step in

9 Even when PINNs are used to solve a forward problem, the technique essen-
tially amounts to an inverse solver.

a water tunnel using sparse STB-based particle tracks; Wang
et al [47], who employed a PINN to improve tomographic PIV
measurements of the 3D wake behind a hemisphere; and Soto
et al [49], who enhanced the temporal resolution of a 2D PIV
test using a PINN to fuse synthetic PIV snapshots with fast
point probe data. These tests and others [103] demonstrate
the ability of PINNs to perform flow field DA with multi-
resolution, multi-modal data.

Based on this preliminary success, researchers have been
actively developing methods to enhance PINNs for PIV
and PTV. PINNs tend to produce overly-smooth velocity
fields, eradicating the fine structures present in a turbulent
flow [47]. This is due to both noise in the data and the
network’s limited expressivity. In this paper, we demon-
strate how SPAV can compensate for noise and improve the
accuracy of reconstructions. There are several strategies to
increase expressivity, including the use of tailored architec-
tures, e.g. with ResNet [104] or SIREN [105] layers, and
domain decomposition with extended PINNs [69, 106]. Other
researchers have improved the performance of PINNs by
embedding boundary conditions like periodicity into the net-
work’s architecture [107], using adaptive activation functions
[108], or dynamically weighting the loss function components
[59].

Appendix B. Overview of DIH-PTV

DIH is a 3D imaging technique that is widely used to char-
acterize microscopic objects. Time-resolved DIH measure-
ments of a particle-laden flow can be utilized for PTV, termed
DIH-PTV. A standard plane-wave DIH-PTV setup consists
of a laser, beam forming optics, and a camera. These ele-
ments are usually set up in-line for PTV, with the cam-
era and laser positioned on either side of the target flow.
Light from the laser scatters off tracer particles and the ref-
erence and scattered waves interfere, forming a hologram
on the camera’s sensor. This information can be numeric-
ally refocused to reconstruct a 3D optical field from which
particle positions can be extracted. Following these particles
in time yields Lagrangian tracks that are suitable for Eulerian
reconstruction. This appendix contains a brief review of
DIH theory, an algorithm for hologram simulation, recon-
struction of the optical field, and some particle extraction
methods.

B.1. Hologram formation

In DIH-PTV, a plane or spherical wave of light is shone
through a particle field towards a camera, which records the
resultant interference patterns. These patterns carry informa-
tion about the phase and magnitude of the light field which can
be leveraged to reconstruct it. Figure 18 depicts a plane wave
scattering off a quasi-point particle at Ψ0 and then forming
a hologram on the imaging sensor. The resultant field can be
treated as a linear combination of the undisturbed ‘reference
wave’, R, and an ‘object wave’, O, produced by scattering off
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Figure 18. Graphical depiction of in-line hologram formation for
plane wave DIH.

the disturbance atΨ0. Both fields code the complex amplitudes
of the electrical field of a light wave10.

Assuming a homogeneous, isotropic medium (e.g. free
space or a lens with a constant refractive index), scalar dif-
fraction theory can be used to describe the propagation of
the electric field of a light wave [109]. The reference and
object waves interfere with each other, and the complex wave
amplitude in the hologram plane can be approximated by the
Fresnel–Kirchoff diffraction formula, assuming the far-field
limit (meaning that the distance from the particle to the sensor
is orders of magnitude larger than the particle size),

E(ξ,η) =− i
λ

¨
[O(x,y)+R(x,y)]× exp(ik |r|)

|r|
dxdy.

(28)

In this expression,E is the electric field incident upon the holo-
gram; ξ and η are sensor coordinates that are aligned with x
and y, respectively; i=

√
−1; λ is the wavelength of light and

k= 2π/λ is the wavenumber; and r is a vector from the object
at Ψ0 to a point in the hologram plane, e.g. Ψ1 in figure 18.
The magnitude of r is

|r|=
√
(x− ξ)2 +(y− η)2 + z, (29)

where z is the distance from the hologram to the object plane.
According to the interference theory, the recorded hologram
can be mathematically expressed as

H(ξ,η) = |R(ξ,η)+O(ξ,η)|2 = |R|2 + |O|2 +R∗O+RO∗,
(30)

where (·)∗ denotes the complex conjugate. Here, |R|2 is the
constant background created by the reference wave, alone,
|O|2 is the intensity of the object wave, which is orders of
magnitude smaller than that of the reference wave, and the
terms R∗O and RO∗ correspond to interference (fringes) in the
hologram.

10 Note that separating the electric field into R and O is a mathematical treat-
ment. In reality, only the total field is physically meaningful.

B.2. Synthetic hologram generation

Based on the hologram formulation theory outlined above,
holograms can be simulated by choosing a suitable object
model and diffraction point-spread function (PSF), which
describes the propagation of a light wave from the object plane
to a sensor. We start by simulating the hologram produced by a
solitary object and extend this model to multi-object scenarios,
including particle fields. Consider the ith spherical particle of
radius ri and location (x ′i ,y

′
i ) in the object plane. The effect of

this particle on the electric field can be modeled with an amp-
litude transmittance function (a.k.a. a mask function) [54],

Ti(x,y) =


0,
√
(x− x ′i )

2 +(y− y ′i )
2 ⩽ ri (31a)

1,
√
(x− x ′i )

2 +(y− y ′i )
2 > ri. (31b)

In this case, the distance between the particle and holo-
gram plane is z ′i . After interacting with the particle, the com-
plex wave amplitude exiting the object plane, Eexit,i, may be
expressed as

Eexit,i(x,y) = Einc,i(x,y)Ti(x,y), (32)

where Einc,i is the wave incident on the particle. The exiting
wave, Eexit,i, contains both the reference and object waves,
Eexit,i = Ri+Oi, and propagates towards the sensor plane.
Using the angular spectrum method, one can approximate this
propagation process with a convolutional integral, transform-
ing equation (28) into

E(ξ,η) =
¨

Eexit,i(x,y)g(x− ξ,y− η,z ′i )dxdy

= Eexit,i(x,y)⊗ g(x,y,z ′i ) , (33)

where ⊗ is the convolution operator and g is the diffrac-
tion PSF. This function is typically modeled by a Rayleigh–
Sommerfield kernel,

g(x,y,z) =
1
iλ

exp
[
ik
√
x2 + y2 + z2

]
√
x2 + y2 + z2

. (34)

For efficient computation, the convolution in equation (33) is
usually converted to a multiplication in the Fourier domain,
often using a fast Fourier transform,

E(ξ,η) = F−1

{
F [Eexit,i(x,y)]

×exp

[
ikzi

√
1− (λωx)

2 − (λωy)2
]}

, (35)

where F(·) is the Fourier transform, with inverse F−1(·),
and ωx and ωy are spatial frequencies in the Fourier domain.
Note that other diffraction kernels like the Fresnel kernel are
available [56]. However, the Rayleigh–Sommerfield kernel
used in the angular spectrum method entails minimal assump-
tions and is thus widely applicable and widely adopted. A
detailed explanation of diffraction kernels for DIH can be
found in [110].
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Thus far, equations (31)–(35) describe the simulation of a
hologram for a single, solitary particle. PTV features dense
particle fields, in which the light field incident on a particle
may be affected by forward scattering from upstream particles
and may thus affect downstream particles, in turn. We incor-
porate these interactions in our simulation by following the
method of Gao [54]; conversely, the magnitude of back-
wards scattering is orders of magnitude weaker and may be
neglected [111].

For a multi-particle hologram, the particles are first sorted
by distance to the sensor in descending order, that is, zi+1 <
zi. The complex wave amplitude exiting the (i+ 1)th particle
plane can be computed using the wave exiting the ith particle
plane such that

Eexit,i+1(x,y) = [Eexit,i(x,y)⊗ g
(
x,y,z ′i − z ′i+1

)︸ ︷︷ ︸
Einc,i+1

]Ti+1(x,y).

(36)

In planar DIH, the wave approaching the first particle is
assumed to be a uniform plane wave: Einc,1 = 1. Finally, the
multi-particle hologram is expressed as

H(ξ,η) = |Eexit,N(x,y)⊗ g(x,y,z ′N)|
2
, (37)

where N is the number of particles and Eexit,N is inductively
computed via equation (36).

B.3. Reconstruction

‘Reconstruction’ in DIH involves computing the object wave
from the recorded holograms, which is generally performed
in two steps. The first step is to ‘numerically illuminate’ the
hologram with the reference wave,

R(ξ,η)H(ξ,η) =
(
|R|2 + |O|2

)
R︸ ︷︷ ︸

(i)

+O|R|2︸ ︷︷ ︸
(ii)

+O∗R2︸ ︷︷ ︸
(iii)

, (38)

where the multiplication of R and H represents the illumina-
tion of the hologram. In equation (38), (i) is a constant back-
ground, (ii) constitutes the real object image to be extracted,
and (iii) is the twin image, which generates a distorted wave-
front leading to an undesirable virtual image. In the second
step, the light wave exiting the hologram is backpropagated to
the object plane, assuming forward diffraction by the Fresnel–
Kirchoff kernel,

E(x,y,z) =
i
λ

¨
R(ξ,η)H(ξ,η)× exp(−ik |r|)

|r|
dξ dη.

(39)

Similar to the forward hologram simulation, equation (39) is
computed by the angular spectrum method,

E(x,y,z) = [R(ξ,η)H(ξ,η)]⊗ g(ξ,η,−z) , (40)

where the negative sign before z represents the direction
of backpropagation. Taking the reference wave to be unity,

the convolution in equation (40) is computed in the Fourier
domain,

E(x,y,z) = F−1

{
F [H(ξ,η)]

×exp

[
−ikz

√
1− (λωx)

2 − (λωy)
2
]}

. (41)

This process is repeated for a series of x–y planes, often called
‘scans’, which are stacked along the z-axis to form the recon-
structed optical field. Note that the reconstruction process in
equations (40) and (41) is based on the sensor intensity. Some
other works describe an equivalent process that uses a contrast
hologram that is centered and normalized by the background
image [56, 112]. The background can be obtained from a cal-
ibration image with no particles.

B.4. Particle extraction

To obtain particle tracks in DIH-PTV, individual particles must
be extracted from the reconstructed 3D optical field. This usu-
ally involves applying a threshold to isolate filaments asso-
ciated with an individual particle and then computing the
centroid of each filament. There are three main challenges
associated with extraction. Firstly, due to the extended DoF
of DIH, extracted particle filaments are highly elongated in
the longitudinal direction and it is difficult to precisely pin-
point the waist of filament. Secondly, 3D particle segmenta-
tion requires sophisticated image processing (e.g. denoising,
SNR enhancement, and morphological operations) and heur-
istic parameter selection (e.g. filter sizes, intensity thresholds).
In other words, DIH usually entails a lot of arbitrary human
intervention. Thirdly, cross-interference between overlapping
particle fringes decreases the SNR of holograms and reduces
the number of detectable particles from the particle field,
which worsens with the seeding density. This effect limits
the minimum spacing of Lagrangian tracks, which poses dif-
ficulties when reconstructing a turbulent flow.

To address these challenges, we employ the DIH particle
extraction method introduced by Toloui and Hong [55]. Their
algorithm is built upon the backpropagation method described
above, which is augmented with three improvements: one to
tackle each challenge. We briefly sketch this method below;
interested readers are referred to [55] for more details. The first
improvement aims to enhance the longitudinal accuracy of the
3D optical field via deconvolution. The deconvolved optical
field is given by

Ideconv = F−1

[
F (IPSF)

∗F (IP)

F (IPSF)
∗F (IPSF)+β

]
, (42)

where IPSF represents the intensity distribution of the optical
system’s PSF, IP is the reconstructed 3D particle field in
equation (41), IP = |E|2, and β is a small constant that prevents
division by zero. The PSF can be determined by reconstructing
the synthetic hologram of a single particle located at the center
of the measurement volume. This 3D deconvolution models
the DIH-reconstructed intensity field as a convolution of the
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true particle field with the system’s PSF. Reversing (decon-
volving) this process can thus improve longitudinal resolution.

The second improvement involves a series of well-defined
3D image processing steps to avoid human intervention: 3D
local SNR enhancement, automatic thresholding, and 3D
segmentation. These procedures overcome the inhomogen-
eous SNR distribution across the deconvolved particle fields,
such that a single intensity threshold can be automatically
chosen for the entire domain to segment 3D particles from the
background.

Lastly, the third improvement introduces an iterative
inverse particle extraction (IIPE) method to increase detect-
able particle concentration. IIPE is able to remove detect-
able particles from the hologram, one by one, and reveal dim
fringes that were previously hidden. Holograms of individual
particles are removed by filling the target particle’s in-focus
cross-section in the reconstruction plane with a mean back-
ground value. This is followed by a forward process to gener-
ate the updated hologram, as described above in appendix B.2,
which does away with the fringe.

Appendix C. Measurement uncertainty sensitivity
study

The DIH-PTV tests reported in section 4 exhibit a large, aniso-
tropic distribution of localization uncertainty. This appendix
presents a sensitivity analysis in which the magnitude and
degree of anisotropy are varied for the forced isotropic tur-
bulence case. Tests performed for this analysis are similar
to the tests in section 4.2.2, except that there is no synthetic
DIH procedure. Instead, the particle positions are corrupted by
additive errors having a prescribed magnitude and z-direction
skew. Other than that, the domain size, measurement interval,
number of particles, advection procedure, PINN architecture,
training schemes, etc of the sensitivity study are carried over
from the isoturb case, as detailed in section 4.1. All addit-
ive errors are drawn from a centered Gaussian distribution

with a non-dimensional standard deviation of 1.25× 10−4,
2.5× 10−4, 5× 10−4, 1× 10−3, 2× 10−3, or 4× 10−3, cor-
responding to 0.03%, 0.06%, 0.13%, 0.25%, 0.5%, or 1% of
the isoturb domain, respectively. In all cases, σx = σy, and we
only ran tests with σz ⩾ σx,σy, assuming that depth sensing
would be less accurate than dot finding, resulting in a total of
21 tests.

Figure 19 presents mean reconstruction errors for the
isoturb flow, produced by the conventional and MC SPAV
techniques. Naturally, reconstruction errors increase with both
the magnitude and skew of localization errors. The conven-
tional and SPAV methods exhibit broadly similar trends, but
SPAV is consistently superior to the conventional method, as
illustrated in the third column of figure 19. Here, the relat-
ive performance of these methods is visualized in terms of the
reduction of error, i.e.

econvϕ − eSPAV
ϕ

econvϕ

.

The benefit of SPAV ismost pronounced for anisotropic errors,
with reductions of error up to 50% for distributions that are
characteristic of a DIH-PTV system. The differences are less
significant for isotropic errors, although it is possible that
these results would change with further optimization of the
loss component weights. SPAV’s relative advantage may be
explained by effectively discounting measurement compon-
ents (i.e. the x-, y-, and z-components of x) as a function of
their uncertainty. Under this interpretation, when the meas-
urement uncertainty is isotropic, both the conventional loss
and SPAV utilize equal weights and should exhibit similar
performance. However, in practice, anisotropic localization
errors are prevalent in PTV, so it is reasonable to expect that
SPAVwill enhance the accuracy of Eulerian velocity and pres-
sure field estimates compared to a generic data loss based on
equation (1).
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Figure 19. Measurement uncertainty sensitivity analysis for the isoturb case: velocity (top row) and pressure (bottom row) errors from
conventional (left) and SPAV (middle) PINNs as well as the relative difference (right). The fuchsia dot represents the measurement
uncertainty from the DIH-PTV isoturb test in section 4.2.2.
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