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Abstract
Multiscale-based entropy methods have proven to be a promising tool for extracting fault
information due to their high feature extraction ability and easy application. Despite multiscale
analysis showing great potential in extracting fault characteristics, it has some drawbacks, such
as cutting the data length and neglecting high-frequency information. This paper proposes a
bi-filter multiscale diversity entropy (BMDE) to filter comprehensive fault information and
address the data length problem. First, the low-frequency information is filtered out by moving
average in a multi-low procedure and the high-frequency information is filtered out by an
adjacent subtraction in a multi-high procedure. Second, a modified coarse-grained process is
introduced to overcome the issue of data length. The validity of the BMDE method is evaluated
using both simulation signals and experimental measurements. Results demonstrate that the
proposed method offers optimal feature extraction capability with the highest diagnostic
accuracy compared with four other traditional entropy-based diagnosis methods.

Keywords: entropy theory, rotor system, bearing fault diagnosis, feature extraction

(Some figures may appear in colour only in the online journal)

1. Introduction

Rotor-bearing systems play an important role in modern pro-
duction and manufacturing fields [1–4]. Timely maintenance
strategies can guarantee a long service life for a rotor-bearing
system, enhance its economic benefits and reduce unplanned
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downtime [5–7]. Feature extraction is the core step for the
condition monitoring of rotor-bearing systems. To this end,
entropy theory emerged from information entropy, as origin-
ally proposed by Shannon. Information entropy reflects uncer-
tainty and complexity in a system, which laid the foundations
for modern information theory and digital communication.
Recently, entropy-based methods have been demonstrated to
be a promising tool in extracting hidden information from
measured vibration signals [8–14]. They have the advantages
of independence of prior knowledge, there being no repro-
cessing manipulations required, and easy application [13, 14].
The most commonly used entropy methods include approx-
imate entropy (AE) [10], sample entropy (SE) [15–17], fuzzy
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entropy (FE) [12, 13, 18] and permutation entropy (PE) [19].
SE can be regarded as an improvement of AE with more reli-
ability. Seeking greater stability, FE was then developed as
an improvement for SE. Using the amplitude permutation of
orbits to estimate dynamical complexity, PE provided a new
perspective for dynamic complexity analysis. These methods
each have their own intrinsic merits and drawbacks.

In order to extract multi-dimensional features, Rostaghi
et al [20] proposed a multiscale procedure using a course-
graining operation. By virtue of the merits of this multiscale
analysis, multiscale sample entropy (MSE), multiscale per-
mutation entropy (MPE) [21] and multiscale fuzzy entropy
(MFE) [18, 22] were developed, respectively, for comprehens-
ive feature extraction [23–28].

Unfortunately, there are two main drawbacks to using
multiscale analysis. From one aspect, the course-graining
operation can shorten the length of the time series [29], lead-
ing to large fluctuations and inaccurate complexity evaluation
[27]. From another aspect, the coarse-graining procedure
involved can be considered as a low-pass filter based on a
Haar wavelet [29]. By performing this process, only the low-
frequency information is preserved, resulting in the loss of
high-frequency information.

Aiming at overcoming the inherent drawback of shortening
time series in coarse-grained algorithms, composite multiscale
entropy was proposed [25]. In composite multiscale sample
entropy (CMSE), at a factor of τ , the entropy value was com-
puted for all processed time series and the CMSE value is
defined as the means of τ value. High-frequency informa-
tion loss was not addressed, although the data-length problem
was addressed. Hierarchical procedure [30] can be regarded
as an improvement of coarse-grained procedure which cre-
ates two frequency operators to multiply in the following lay-
ers. However, the signals in different layers do not distribute
as high-frequency components or low-frequency components.
There are also some other methods to enhance the coarse-
grained method, but its drawbacks have not been satisfactorily
addressed [31–33]. Therefore, it is necessary to introduce a
new method to overcome these drawbacks.

This paper proposes bi-filter multiscale analysis, which
can decompose a raw signal into multiple-scale time series
by a multi-high procedure and multi-low procedure, simul-
taneously. Note that the multi-low procedure aims to extract
the low-frequency information over different scales by over-
lapping means. Meanwhile, high-frequency information can
be gained through the multi-high procedure by transplace-
ment subtraction. The multi-low procedure and multi-high
procedure use a fixed-step-size sliding window to achieve rel-
atively invariable data length. By doing this, the comprehens-
ive fault information embedded in the low and high spectra
can be extracted using bi-filter multiscale analysis, and thereby
the drawbacks of the original coarse-graining process can
be mitigated. Based on the superiority of bi-filter multiscale
analysis, bi-filter multiscale diversity entropy (BMDE) is
generated by calculating the diversity entropy value of the pro-
cessed signals.

According to the whole fault diagnosis method, the BMDE
is applied to fault-feature extraction from vibrational signals
first. Then, a random forest (RF) [30, 34] classifier is selected
to identify the fault types using the features from the BMDE.
Section 2 introduces the theoretical framework of the proposed
method and the related theories. Section 3 presents a simula-
tion model and simulated signal used to evaluate the perform-
ance of the BMDE. Section 4 validates the effectiveness of the
proposed method with experimental bearing signals. Finally,
section 5 summarizes the conclusions.

2. Methodology

2.1. The shortcomings of the original multiscale analysis

The BMDE method is composed of two main steps. First,
to generate multiple time series by a multiscale procedure;
second, to calculate the entropy value of each coarse-grained
time series. Figure 1 demonstrates the original multiscale pro-
cedure. The implementation steps of themultiscale process are
as follows.

Step 1. For a given time series X = {x1,x2, . . . ,xi, . . . ,xN},
where i = 1,2, . . . ,N, and N indicates the data length, segment
the original time series into multiple-scale time series using
equation (1):

yτj =
1
τ

j+τ−1∑
i=j

xi,1< j < N− τ + 1, (1)

where τ indicates the scale factor, which should be fixed as a
positive integer. The parameter τ represents the strength of the
procedure.

Step 2. Calculate the BMDE value of the multiscale time
series using equation (2). The detailed computational proced-
ure can be found in [30]. The diversity entropy algorithm can
be described via

BMDE(X,m,ε) = DiversityEntropy(yτj ,m,ε), (2)

FMS= sin(2π )+ sin(4π )+ sin(6π )+ sin(8π )

+ sin(10π )+ sin(12π ). (3)

For a given time series of synthesized signals, the data
length is 8196. The simulated signal is given by equation (3).
The sampling frequency is fixed at 63 Hz. Figure 2 illus-
trates the waveforms of the multiple series. By comparing
the three waveforms (τ = 1, τ = 3, τ = 5), it is noted that
the envelope of the signal tends to flatten as the scale factor
increases. The length of the data becomes shorter with a lar-
ger scale factor. Figure 3 represents spectrograms of multiple
series (τ = 1, τ = 3, τ = 5). The low-frequency compon-
ents are retained, and the high-frequency components are sup-
pressed. It has been mentioned that the multiscale proced-
ure is effectively a low-pass filter [29]. The resulting spectra
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Figure 1. Schematic of multiscale graining procedure.

Figure 2. Time-domain signal with different scale factors: (a) τ = 1, (b) τ = 3, (c) τ = 5.

in figure 2 are consistent with multiscale theory. It demon-
strates that the multiscale procedure excavates low-frequency
information.

2.2. Improvements to multiscale procedure

To tackle the data-length problem, a new strategy, called bi-
filter multiscale analysis, is developed in this paper. From one
aspect, amodified coarse-grained process is developed to solve
the difficulty of data length when using original multiscale
analysis. In this paper, the BMDE utilizes a sliding window as
one step, and thenmost of the data points are reused in the gen-
eration of the next multiple series’ data points. The schematic
of new strategy shows great stable in data-length in figure 4.
For example, the data length of the original time series is 1000.
In the traditional multiscale procedure, the length of multiple
series is reduced to 100, while the new strategy generates a
data length for its multiple series of 980.

From another aspect, bi-filter multiscale analysis adopts a
multi-high operator to generate high-frequency information.
In this strategy, some of the data points are reused to gen-
erate adjacent multiple-series data points. This can enhance
the relevance of the multiple series. Traditionally, via subtrac-
tion with adjacent signal points, the noise signal is offset and
high-frequency information is retained. The strategy to gain

high-frequency information is given in equation (4). In the
multi-high operator, the xj constantly subtracts with the next
τ − 1 points. Then, it calculates the mean value of the τ − 1
results:

multi-high operator : zτj =xj−
1

(τ − 1)

j+τ−1∑
i=j+1

xi, 1⩽ j ⩽ N.

(4)

While the traditional process just considers the influence of
the adjacent data points, the multi-high operator calculated by
equation (4) containsN data points after xj. The frequency-loss
problem is also considered in the new strategy.

2.3. The proposed BMDE method

In the proposed BMDE method, more frequency information
can be captured and the length of data kept constant. The com-
putational procedures are introduced as follows:

Step 1. For a given time series X = {x1,x2, . . . ,xi, . . . ,xN},
i = 1,2, . . . ,N, where N indicates the data length and τ rep-
resents the scale factor. When the scale factor is fixed, X
will be processed with the multi-low procedure and multi-
high procedure, which are given by the multi-low operator and
multi-high operator as below:

3
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Figure 3. Signal with different scale factors in the frequency domain: (a) τ = 1, (b) τ = 3, (c) τ = 5.

Figure 4. Schematic of the new strategy, which stabilizes the length of the signal.

multi-low operator : yτj =
1
τ

j+τ−1∑
i=j

xi, 1⩽ j ⩽ N, (5)

multi-high operator : zτj = xj−
1

τ − 1

j+τ−1∑
i=j+1

xi, 1⩽ j ⩽ N.

(6)

Step 2. Calculate the entropy value of the two types of
series in each multiple-scale time series. The expression of the
BMDE is given by

BMDE(X,m,ε) = DE(yτj ,m,ε),DE(z
τ
j ,m,ε). (7)

A flow chart of the proposed method is given in figure 5.
A diagram of the proposed method is shown in figure 6.

It is worth noting that the process length of the time series
will not be reduced dramatically. Two columns of data can
be obtained using the proposed method, which represents the
high-frequency components and low-frequency components,
respectively.

Overall, a novel method that considers both the length
of data and more frequency information is here proposed.

The BMDE values calculated by the procedure can be con-
sidered as fault features. After feature extraction by the pro-
posed BMDEmethod, the separability can be evaluated by RF
classification.

3. Simulation evaluation

To validate the reliability of the proposed method, a simu-
lation bearing-structure model is constructed in this section.
In this case, three types of faults (inner race fault, outer
race fault and rolling element fault) are introduced. The
detailed parameters of the tested bearing are listed in table 1.
In the simulation, the rotation speed is set to 6000 rpm
and the sampling frequency to 10 240 Hz. Structure dia-
grams of the three types of simulated faults are shown in
figure 7.

3.1. Simulated bearing signals

3.1.1. Outer race fault model for rolling bearings. Assume
that the damage point is located in the load zone of the rolling
bearings and the sensor is located in the load zone with the
maximum load density, as shown in figure 7(a). Suppose the
damage point comes into contact with the rolling element at
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Figure 5. Flow chart of the proposed method.

Figure 6. Schematic of two procedures: (a) τ = 2, (b) τ = 3.

Table 1. Parameters of simulated bearing fault signal.

Parameter Value

Natural frequency of bearing 4000 Hz
Roller diameter 6.5 mm
Rotating speed 3000 rpm
Number of rollers 12
Pitch circle diameter 35.5 mm
Sample frequency 10 240 Hz
Contact angle 0◦

t = 0; then, the impulse forces induced by the local damage
point on the outer race during rotation can be expressed as
equation (8):

∆o(t) =
+∞∑
t=−∞

doδ(t− kTo), (8)

where do denotes the impulse intensity, δ(t) denotes the unit
impulse function, k is the number of generated pulses, f o sig-
nifies the characteristic frequency of the outer race fault and
To = 1/f o is the time interval between two impulses.

The damping vibration function aroused by the impulse
force is written as

e(t) =

{
exp(−t/T), t> 0

0 t⩽ 0
. (9)
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Figure 7. Structure diagrams of simulated faults. (a) Outer race fault, (b) inner race fault, (c) rolling element fault.

Because the time required for attenuation of the bearing
vibration is much smaller than To, the damage point of the
outer race will continuously generate impact pulses at fre-
quency f o during rotation. The outer race fault signal can be
calculated by equation (10):

vo(t) =
+∞∑
t=−∞

doδ(t− kTo)× e(t). (10)

3.1.2. Inner race fault model for rolling bearings. The inner
race fault model of rolling bearings is shown in figure 7(b).
It is assumed that the rolling elements come into contact with
the damage point in the inner race at the point of maximum
load and the first pulse is aroused at t = 0. Upon ignoring
the influence of load distribution and damage-point position, a
series of impulsive forces generated by the damage point can
be expressed as equation (11), which is similar to the outer
race fault:

∆i(t) =
+∞∑
t=−∞

diδ(t− kTi), (11)

where di indicates the intensity of the impulsive force, δ(t)
is the unit impulse function and k represents the number of
impulses. In addition, f i is the characteristic frequency of the
inner race fault and T i = 1/f i denotes the time interval between
two impulses.

The load distribution can be expressed as equation (12):

q(φ) = qmax

[
1− 1

2σ
(1− cosφ)

]n
. (12)

In this paper, it is set as n = 1.1 and σ = 0.5.
As shown in figure 7(b), when the damage point of the inner

race contacts with the rolling element at a certain angle φ ,
the impulsive force collected by the sensor is the projection of
which on the axis of the sensor. The expression of the influence
coefficient of the damage-point location is as follows:

p(φ) = cosφ, φ = 2π frt, (13)

where f r indicates the rotation frequency. In this way, the
impulsive force on the axis of the sensor is given by
equation (14):

fi(t) = ∆i(t)q(2π frt)p(2π frt). (14)

Finally, the simulated inner race fault signal can be
expressed as equation (15):

vi(t) = Ai [∆i(t)q(2π frt)p(2π frt)]× e(t), (15)

where Ai is the conversion coefficient between the impulsive
force and vibration. In this paper, Ai = 1.

3.1.3. Rolling element fault model. The simulated rolling
element fault signal is similar to the bearing inner and outer
simulations, and which is shown in equation (16):

vb(t) = Ab [∆bo(t)q(2π frt)p(2π frt)]× e(t)

+Ab [∆bi(t)q(2π frt)p(2π frt)]× e(t) (16)

where Ab is the conversion coefficient between the impulsive
force and vibration. In this paper, Ab = 1.

After constructing fault models and obtaining correspond-
ing simulated signals, figure 8 illustrates the raw time-domain
signals and the corresponding spectra. The signals used are
consistent with the built models.

3.2. Simulation results and analysis

To illustrate the superiority of the proposed method, the pro-
posed BMDE is compared with hierarchical diversity entropy
(HDE) and traditional multiscale diversity entropy (MDE)
using the simulated signals. The length of the data used is fixed
at 4096. To simulate a realistic noisy operating environment
of the rotation machine, white noise interference is added to
the simulated signals. The signal-to-noise ratio is set as 8. The
parameters of the three methods are listed in table 2. Figure 9
shows the Euclidean distance of each set of entropy for dif-
ferent methods. The mean value of the features of the first 10
samples is taken as the base vector, and the vertical axis rep-
resents the Euclidean distance between the samples and the
reference vector. The closer the Euclidean distance between
the same fault sample and the reference vector, the better the
stability of the entropy method. Furthermore, the larger the
Euclidean distance between different fault samples is, the bet-
ter the possible performance of the feature extraction and fault
classification of the entropy method. The points numbered 1–
50, 51–100 and 101–150 in (a)–(c) are generated by the simu-
lated outer race fault signal, inner race fault signal and rolling
element fault signal, respectively.
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Figure 8. Simulated time-domain signals and frequency spectrum. (a) and (d) Outer fault, (b) and (e) inner fault, (c) and (f) rolling element
fault.

Table 2. Parameters of applied entropy methods.

Method m τ σ

BMDE 4 1 30
HDE 3 1 30
MDE 4 1 30

Figure 9. Comparison results using simulated bearing fault signals. (a) BMDE method, (b) HDE method, (c) traditional MDE method.

From figure 9, by comparing the first working condi-
tion (points numbered 1–50) in figures 9(a)–(c), the variab-
ility of BMDE is similar (the standard deviation of which
is 0.0138) to HDE (the standard deviation of which is
0.0102) but the variability of MDE is much worse. While

in the second health condition (points numbered 51–100),
the fluctuation of BMDE, HDE and MDE is gradually
exacerbated. Moreover, regarding on the third health condi-
tion (points numbered 101–150), the proposed method per-
forms best in stability. Based on the aforementioned analysis,
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Figure 10. Spectra of signals processed by multi-high operator in different scales. (a) τ = 1, (b) τ = 2, (c) τ = 4, (d) τ = 6, (e) τ = 8.

Figure 11. Spectra of signals processed by multi-low operator. (a) τ = 1, (b) τ = 2, (c) τ = 4, (d) τ = 6, (e) τ = 8.

the proposed method demonstrates better distinguishabil-
ity, stability and dependability than the other two entropy
methods.

Figure 10 presents frequency spectra of the data used
through the multi-high process. The data used are simulated
based on the constructed outer race fault model. Considering

the length of the data, the scale is equal to 1, 2, 4, 6 and 8,
respectively. It should be noted that figure 10(a) represents the
spectrum of the original data when τ = 1.

As mentioned above, the multi-high process is designed to
gain high-frequency information. Compared with the raw sig-
nal spectrum in figure 10(a), the frequency component in the
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Figure 12. The rolling bearing experiment and the layout of the test rig.

Table 3. Components of the test rig.

No. Component

1 Support bearing pedestal
2 Displacement sensor bracket
3 Friction assembly and bracket
4 Axis
5 Casing friction support and blade disc
6 Test bearing pedestal
7 Worm and worm gear

low area is attenuated and the frequency spectrum is boosted in
the high area ((b)–(e) in figure 10) when the number of scales
increases.

Similarly, figure 11 presents frequency spectra of the data
used in the multi-low progress, which is also obtained from
the constructed outer race fault model. Compared with the
spectrum of the raw signal when τ = 1, the frequency com-
ponents gradually gather in the low-frequency area with the
increase of the number of scales. The appearances of these
multi-low and multi-high spectra are consistent with the the-
oretical derivation.

In this section, the simulation model was first estab-
lished and the proposed method has been verified by com-
paring it with other well-known entropy methods. Then,
the capacity of BMDE to capture more frequency inform-
ation in spectrum processing has also been analyzed and
proven.

Table 4. Parameters of the experiment.

Bearing specs 6205

Number of rolling elements 7
Pitch diameter 52 mm
Rolling elements diameter 15 mm
Contact angle 0◦

Sampling frequency 10 240 Hz
Rotating speed 2000 rpm

4. Experimental evaluation

To evaluate the feasibility and advantage of the proposed
method in practical working conditions, an experimental test
rig was set up, as shown in figure 12. The experimental sys-
tem is based on a variable frequency motor, rotor shaft, rolling
bearing seat, shaft system load disc, radial loading device,
grinding installation bracket and coupling. The type of bear-
ing is a 6205 bearing, and each component of the test rig in
figure 12 is described in table 3.

4.1. Experimental setting

Faults are simulated by substituting the faulty parts or increas-
ing the extent of the axis shift. More than 20 types of faults
are simulated by the system, which includes single-portion
failures and combined faults. Single-point failures and com-
bined faults will be discussed, respectively. The parameters
of the experiment are given in table 4. In order to obtain the

9
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Table 5. Parameters of methods set in the experiment.

Method Scale Layer Time delay Threshold Embedding dimension

HDE — 3 1 — 3
MPE 20 — 1 — 6
MSE 20 — — — 2
MFE 20 — — 0.15 2
BMDE 20 — 1 — 3
MDE 20 — 1 — 3

Figure 13. Practical faults diagram: (a) full annular rubbing, (b) blade crack, (c) blisk crack, (d) shaft coupling fault, (e) shaft rubbing,
(f) shaft crack.

experimental data, an acceleration sensor was placed on the
axis, which is labeled in figure 12. The constant rotational
speedwas 2000 rpm. The loadwas set to 40% and the sampling
frequency to 10 240 Hz.

4.2. Results and discussion

The performance of the proposed method has been validated
by comparing it with other classical entropy models. Accord-
ing to correlated references, the optimal parameter settings of
the methods applied are listed in table 5 [5].

4.2.1. Single-point failure analysis. The signal-point failures
considered are a healthy condition (He), full annular rubbing
(FAR), blade crack (BlaC), blisk crack (BliC), shaft coupling
fault (SCF), shaft rubbing (SR) and shaft crack (SC). The blade
crack faults are divided into four kinds of faults, according
to the damage extent. The fault sets in the experiment rig are
shown in figure 13.

To validate the performance in a practical environment, a
shaft rubbing fault signal is used. In the simulated portion, the
frequencies in the low-frequency band are limited, while the
frequencies in the high-frequency band are emphasized. In the
experimental shaft-rubbing signal, this condition still pertains.

The performance in the low-frequency procedures is similar,
as well. The detailed performance is shown in figure 14.

To examine the quality of the features, features from six
methods are first projected onto a two-dimensional plane
with the t-distributed stochastic neighbor embedding(t-SNE)
method, as shown in figure 15. The clustering shows the
feature-extraction ability of the method: the smaller the intra-
class distance among samples within the same cluster, and the
larger the inter-class distance among clusters, the better per-
formance the feature extraction has.

The features from the proposed BMDE method display the
largest inter-class distance and smallest intra-class distance in
figure 15(a). There is only a little mix in the margin of class-D
and class-E, which means that the BMDE has good separab-
ility among features. In figures 15(b) and (e), the features of
HDE indicate better inter-class distance than those of MPE,
but the intra-class distance ofMPE is smaller than that of HDE.
In figures 15(c) and (d), the clusters of MDE and MFE are
dispersed, and even show a relatively big mix in MFE. Fur-
thermore, the clusters obtained by MSE mix together and can
hardly be distinguished, as is shown in figure 15(f). Based on
the analysis above, the BMDE method generates the most dis-
tinctive features, which are superior to other entropy methods.

Following this, the original features from the six methods
are processed using the RF classifier mentioned above. Half
of the data will be used to train the classifier and the rest of

10
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Figure 14. Analysis with experimental shaft-rubbing signal in multi-high procedure: τ = 1 to 3, (a)–(c).

Figure 15. Scatter diagrams of features from different methods: (a) BMDE, (b) HDE, (c) MDE, (d) MFE, (e) MPE, (f) MSE.

the data used to test the identification rate. As figure 16 illus-
trates, the BMDE method can provide data that has the most
distinctive features among the six methods. Significantly, the

identification rate of BMDE can reach up to 95.1%, which
is favorable in industrial practice. The performance of HDE
is notable among the other methods, the identification rate of

11
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Figure 16. Identification rate distribution with the increase of training data portion.

Figure 17. Confusion matrix of rotor-bearing system under 10 health conditions.

which reaches 91.76%. MDE, MPE and MFE generally show
the same ability. The identification rate of MDE is barely sat-
isfactory, according to the reported 85.51%.

In reality, the recognition accuracy will increase with aug-
mentation of the proportion of training data. It is noticeable
that when only 15% of the data is set as training data, the pro-
posed method shows high accuracy, which is the equivalent to
90% of the data being trained in HDE, and much higher than
that of MDE. This means the proposed method works accur-
ately, especially when the data set is insufficient. While deal-
ing with examples of real-world industrial diagnosis, data are
usually limited. In this regard, BMDE demonstrates outstand-
ing application prospects.

Figure 17 shows the identification results of the proposed
BMDE. Only 28 samples are misclassified. Based on the

confusion matrix, samples of class-4 and samples of class-5
tend to be misclassified, which displays a high degree of con-
sistency. Further, the method performs well in feature extrac-
tion with the RF classifier.

4.2.2. Combined failure analysis. In a real working envir-
onment, combined malfunctions are commonly found along
with single faults, and so should be considered in any analysis.
As such, 11 kinds of combined failures and health work-
ing data are collected from the experiment bench shown in
figure 12. The combined failures include full annular rubbing
with a shaft coupling fault and shaft crack (FARCFSF), full
annular rubbing and shaft rubbing (FARSR), a blade crack(4)
with shaft coupling fault (BC(4)SCF), a blisk crack with full
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Figure 18. Scatter diagrams of features using different methods:
(a) BMDE, (b) HDE, (c) MDE, (d) MFE, (e) MPE, (f) MSE.

annular rubbing (BCFAR), a blisk crack with a shaft crack
(BCSC), a blisk crack with shaft rubbing (BCSR), a shaft
coupling unbalanced fault with a shaft crack (BCUFSC), shaft
rubbing with a shaft fault (SRSF), a shaft crack with a blade
crack(4) (SCBC(4)), a shaft crack with a shaft coupling fault
(SCSCF) and a shaft crack with shaft rubbing (SCSR). The
parameter settings for data collection remain unchanged.

First, the raw features from six methods are processed by
data dimension-reduction methods to obtain a visual data dis-
tribution. The sample clusters of the proposed BMDE shown
in figure 18(a) display a small intra-distance and large inter-
distance, with few clusters mixed. In figures 18(b), (d) and
(e), the clusters of HDE, MFE and MPE are nearly the same,
with larger intra-distances and closer inter-distances than that
of BMDE. However, the clusters of HDE, MFE and MPE are
basically distinguishable. In addition, the result of the MSE
method is far from ideal, as shown in figure 18(f).

When 50% of the data is used for training, the recognition
rate can reach up to 98.2% with 12 kinds of combined fail-
ures by the RF classifier, which is shown in figure 19. The
recognition rate achieved by the classifier shows high uniform-
ity, as confirmed in the cluster diagrams. HDE,MFE, andMPE
show practical unanimity after the classifier with scattergram.

Figure 19. Fault identification rates of the six methods.

5. Conclusion

To address the characteristic issues of entropy-based fault dia-
gnosis using multiscale analysis, this paper proposed a bi-filter
multiscale analysis method. To solve the frequency-limitation
problem, a multi-low and multi-high procedure were used to
filter out low-frequency and high-frequency information. To
deal with the data-length loss problem, a bi-filter multiscale
analysis was performed to reset the step of the sliding window
to overcome the drawbacks of coarse-graining.

The bi-filter analysis is combined with diversity entropy,
which thus constitutes the newBMDEmethod. Finally, a fault-
diagnosis framework was developed based on BMDE and RF
to achieve accurate fault diagnosis for a rotor-bearing sys-
tem. The performance of the proposed method was verified
by using simulated and experimental data. By comparing with
the HDE, MDE, MFE, MPE and MSE methods, it was found
that the BMDE could extract more features and provide accur-
ate entropy values with long data lengths. Thus, it can gener-
ate the highest diagnostic accuracy and shows superior per-
formance in resisting environmental noises compared with the
aforementioned methods.

In future work, bi-filter multiscale analysis will be com-
bined with other entropy-based methods which can provide
accurate and low-volatility features. The application of bi-
filter multiscale analysis shows great potential in weak feature
extraction for fault diagnosis.
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