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Abstract
Thermoelectric materials can be used to construct devices which recycle waste heat into electricity.
However, the best known thermoelectrics are based on rare, expensive or even toxic elements,
which limits their widespread adoption. To enable deployment on global scales, new classes of
effective thermoelectrics are thus required. Ab initiomodels of transport properties can help in the
design of new thermoelectrics, but they are still too computationally expensive to be solely relied
upon for high-throughput screening in the vast chemical space of all possible candidates. Here, we
use models constructed with modern machine learning techniques to scan very large areas of
inorganic materials space for novel thermoelectrics, using composition as an input. We employ an
attention-based deep learning model, trained on data derived from ab initio calculations, to predict
a material’s Seebeck coefficient, electrical conductivity, and power factor over a range of
temperatures and n- or p-type doping levels, with surprisingly good performance given the
simplicity of the input, and with significantly lower computational cost. The results of applying the
model to a space of known and hypothetical binary and ternary selenides reveal several materials
that may represent promising thermoelectrics. Our study establishes a protocol for
composition-based prediction of thermoelectric behaviour that can be easily enhanced as more
accurate theoretical or experimental databases become available.

1. Introduction

Approximately 65%–70% of the energy used in industrial and transportation processes is wasted as heat [1].
Traditional means of converting waste heat into electricity involve the use of devices such as Rankine steam
engines, but these methods tend to involve machines comprised of multiple moving parts, which require
maintenance and upkeep, and are difficult to scale. Thermoelectric generators, which are solid-state devices
without moving parts, provide an alternative and convenient solution to waste heat recovery [2]. A
thermoelectric generator is typically built from two semiconducting materials, one with n-type conductivity,
and the other with p-type conductivity. The materials are assembled with electrical and thermal connections
between a heat source, at temperature Thot, and a heat sink, at temperature Tcold. The efficiency of a
thermoelectric generator depends strongly on the temperature difference, Thot–Tcold, as well as on the
physical characteristics of the materials used, which are usually summarized in the figure of merit:

zT=
S2σT

κ
. (1)

Here, S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature, and κ is the
thermal conductivity, which contains two main contributions: the lattice thermal conductivity κlatt due to
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crystal vibrations, and the electronic thermal conductivity κelec due to heat-carrying diffusion of electrons in
the solid. The term S2σ is commonly referred to as the power factor. The higher the dimensionless figure of
merit zT, the more efficient the thermoelectric material. Consequently, a good thermoelectric material must
exhibit a large (absolute) Seebeck coefficient, good electrical conductivity, but low thermal conductivity.

Finding good thermoelectric materials with the right combination of properties is a difficult task, because
of the interdependence of the properties that appear in the figure of merit. Other factors, like abundance and
toxicity, further complicate the search for good candidate materials. While thermoelectricity has been a
known phenomenon since the early 1800s [3, 4], relatively few materials have been discovered that are
effective enough for practical applications. Well-studied thermoelectric materials, such as Bi2Te3 and PbTe,
are suitable for various applications, but are often too expensive or too toxic for widespread adoption [5]. If
thermoelectric generators are to be deployed on a scale large enough to have a positive environmental impact,
new materials are needed [6]. The search for novel thermoelectrics is an active field of research [7–9]. A range
of promising thermoelectric materials have been discovered experimentally, either serendipitously, or as a
result of chemical intuition. In the low temperature range (near room temperature), where thermoelectric
materials are typically used for cooling applications or low-grade heat recovery, top performances are
achieved with Bi2Te3-based alloys (e.g. zT = 1.2 and power factor of 45µWcm−1 K−2 for (Bi1−xSbx)2Te3 at
room temperature [10]). Materials based on PbTe exhibit some of the best performances in the temperature
range between 500K and 900K (e.g. zT of 2.5 at around 800K in p-doped Pb1−xSrxTe, with a maximal
power factor above 30µWcm−1 K−2) [11]. At very high temperatures, such as those used in radioisotope
thermoelectric generators (∼1000K or above), Si–Ge alloys exhibit some of the highest figures of merit (e.g.
peak zT of about 1.3 at 1173K in an n-type nanostructured SiGe bulk alloy, corresponding a maximal power
factor of∼30µWcm−1 K−2) [12]. Other families of compounds that are attracting considerable attention as
promising thermoelectric materials include the metal chalcogenides (e.g. SnSe, Cu2Se) [13–15], skutterudites
(e.g. CoAs3, CoSb3) [16], Zintl compounds (e.g. YbZn2Sb2) [17], clathrates (e.g. Sr8Ga16Ge30) [18], Heusler
and half-Heusler compounds (e.g. TiNiSn, ZrNiSn) [19–21], and metal oxides (e.g. NaCo2O4, Ca3Co4O9)
[22, 23]. Hole-doped polycrystalline SnSe is the record-holder in terms of thermoelectric figure of merit, and
is reported to exhibit a zT of 3.1 at 783K [24]. In principle, there are no theoretical or thermodynamic limits
for the possible values of zT [25], so there is hope that materials with even higher values of zT can be found.

In addition to trial-and-error exploration, and the rational design of materials, computational techniques
based on the combination of density functional theory (DFT) and high-throughput screening (HTS) are
becoming increasingly prevalent in the search for new thermoelectrics [26–28]. The first report of such an
approach was made in 2006 by Madsen, who screened a dataset of 1630 Sb-containing compounds derived
from existing crystal structure databases, and based on the results of ab initio calculations, identified LiZnSb
as an interesting thermoelectric material [29]. Since then, a number of studies involving the use of HTS in
the search for new thermoelectric candidates have followed [30–38]. The increasing availability of distributed
computing infrastructure, along with the development of workflow management software [39–46], has
enabled the growing adoption of this approach.

While DFT-based HTS is becoming more prevalent, there remains a large gap between the size of
chemical space that is accessible with this approach, and the size of the space of all possible inorganic
materials. To bridge that gap, and to further accelerate computational predictions of thermoelectric
behaviour, techniques involving the use of machine learning (ML) have been gaining popularity in the search
for new thermoelectric materials [47–51]. Data for these ML approaches can come from either theoretical
calculations, or from physical experiments. HTS studies have been producing ab initio results for thousands
of materials, and these results can be assembled into datasets that are usable with ML algorithms. Since
experimental data is scarcer, the outputs of ab initio calculations are often the source of data for ML
approaches. Using ML to learn models that predict the output of ab initio calculations is sensible, since
invoking an ML model is much faster (and less computationally expensive) than carrying out an ab initio
calculation. ML models of various thermoelectric properties, such as the Seebeck coefficient [52–55],
electrical conductivity [56, 57], power factor [58–61], lattice thermal conductivity [62–74], and even zT
[75–80], have been developed.

Deep learning is a particular ML approach that has been very successful in recent years, and has seen
adoption in many diverse areas of science [81, 82]. It is characterized by the combination of large datasets
with various neural network architectures, together with advantages such as automatic feature extraction. In
materials chemistry, deep learning approaches have been adopted for prediction of materials properties [83].
General purpose deep learning architectures for materials properties prediction, such as ElemNet [84], IRNet
[85, 86], CGCNN [87], MEGNet [88], Roost [89], and CrabNet [90] have become powerful tools in the
materials informatics toolbox.
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Here, we utilize attention-based deep learning, together with existing datasets derived from
high-throughput DFT calculations [91], to predict the thermoelectric transport properties of a material. The
input to the model is a representation of a material’s composition, and optionally the material’s band gap.
The output is a collection of predictions for a range of temperatures, for various doping levels, and for n and
p doping types. This structure-free approach allows us to scan regions of materials space of hypothetical but
plausible compounds, whose structures are not known. Our multi-output approach creates a thermoelectric
behaviour profile for a material at a number of different conditions, which offers advantages over narrower
models that only make predictions for specific conditions.

2. Methods

2.1. Datasets
Our models are trained on the dataset published in 2017 by Ricci et al [92] (henceforth the Ricci database).
This is a freely available electronic transport database containing the computationally derived electronic
transport properties for 47 737 inorganic compounds with stoichiometric compositions. The properties
listed include the Seebeck coefficient, the electrical conductivity, and the electronic thermal conductivity,
obtained using DFT in the generalized gradient approximation (GGA), and the Boltzmann Transport
equation through the BoltzTraP computer software [93], under the constant relaxation time approximation
(CRTA). They also associate the computed band gap with each entry, amongst several other properties. For
each compound, the aforementioned properties were determined at various temperatures (100K–1300K in
100K increments), for p- and n-doping types, and at five doping levels (ranging from 1016 to 1020 cm−3).
Moreover, each property is a tensor quantity reported as a 3×3 matrix. The database is altogether quite large,
with 18 617 430 data points if one considers only the values of the diagonal elements Sxx, Syy, and Szz (i.e.
47 737 compounds× 13 temperatures× 2 doping types× 5 doping levels× 3 diagonal elements). Another
important consideration is that there are duplicate compounds in the database in terms of composition
(corresponding to possible polymorphs). While there are 47 737 unique compounds in the database when
structure is considered, there are only 34 628 unique compositions. In this study, we form a dataset of
compositions from the Ricci database and their associated thermoelectric transport properties. For cases
where there are multiple entries with the same composition, we obtain the DFT-derived energy per atom of
each polymorph, and use the transport properties and band gap of the entry corresponding to the
polymorph with the lowest energy per atom.

Additionally, we form a dataset consisting solely of compositions and their associated electronic band
gaps derived from DFT, by combining data from the Materials Project [94] and the Ricci database. We
obtained 126 335 structures and their associated electronic band gaps from the Materials Project, which
corresponded to 89 444 unique compositions, which are used to train the band gap predictor. Where there
were multiple structures for a composition, again we used the band gap of the polymorph with the lowest
computed energy per atom.

The Ricci database has some important limitations. As discussed in [92] and elsewhere (see [95] for a
recent perspective), the use of the GGA and CRTA in the prediction of electronic transport can lead to large
discrepancies with respect to experiment. In particular, GGA band structures generally exhibit too narrow
gaps and too large bandwidths, which tends to exaggerate the electronic conductivity. The CRTA, especially
when unaccompanied by physically-sound prediction of relaxation times, misses important differences in
scattering mechanisms across compounds. Furthermore, the calculations in [92] did not consider spin–orbit
coupling (SOC), which often has an important effect on the electron transport properties of materials [96].
Inevitably, any ML model based on this dataset will carry over these limitations of the underlying data,
hindering the quality of the predictions with respect to experimental values. However, our approach
establishes a protocol capable of efficiently mapping composition to thermoelectric behaviour, which can be
easily refined once more accurate databases become available. This is important because, in addition to the
improvement of existing ab initio databases, there are ongoing efforts to create large databases of
thermoelectric properties from experiment [97], so we anticipate our model will keep evolving following the
expansion of such datasets.

2.2. MLmodels
We build ML models that predict the Seebeck coefficient, the electrical conductivity, and the power factor
using data from the Ricci database. Our multi-output regression models [98, 99] produce predictions of
transport properties at 13 temperatures, 5 doping levels, for 2 doping types, given a material’s composition
and (optionally) band gap. The task is to predict the mean of the diagonal elements of the Seebeck tensor,
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Figure 1. Depiction of the multi-head self-attention operation. The input, Xenc ∈ Rn×dmodel , consists of the fractionally encoded
representations for n constituent elements of the composition, each with dmodel components. Linear transformations are applied
to the input to produce the query, Q ∈ Rn×dmodel , the key, K ∈ Rn×dmodel , and the value, V ∈ Rn×dmodel , using the learned
parametersWQ,WK , andWV , respectively. The query, key and value are each subsequently separated into h heads (indexed here
by i). The corresponding queries, Qi, keys, K i, and values, V i, are combined to produce the attention products, Ai, by multiplying
the softmax of a scaled dot-product of the queries and keys with the values. After the attention products are concatenated to
produce A, a linear transformation of A using the learned parametersWO produces the output of multi-head self-attention,
Xatt ∈ Rn×dmodel .

(Sxx + Syy + Szz)/3, henceforth referred to as the Seebeck coefficient, S, and the mean of the diagonal
elements of the electrical conductivity tensor, (σxx +σyy +σzz)/3, henceforth referred to as the electrical
conductivity, σ. The values for electrical conductivity in the Ricci database are reported per unit of relaxation
time. Hence, in this report, electrical conductivity, σ, will more precisely refer to electrical conductivity per
unit relaxation time, σ/τ . The target power factor is also predicted, and is defined here as the mean of the
directional power factors, (S2xxσxx + S2yyσyy + S2zzσzz)/3. It will be denoted by PF, and is also given per unit of
relaxation time.

More formally, the task is to learn a function f : X →Y , given a training setD = {(xi,yi) | 1⩽ i ⩽ k},
with xi ∈ X , yi ∈ Y , and k labelled examples. Here, the xi represent a multi-dimensional input describing
the features of an exemplar, and yi represent a multi-dimensional target associated with xi. A training
procedure is used to find f, and involves the minimization of a loss, L : Y × Ŷ → R, that specifies the degree
of disagreement between the true values Y , and Ŷ , the output of f given members of X .

Here, we use two different forms of f : a Random Forest (RF) [100], and an attention-based deep neural
network based on the CrabNet architecture, which is the state-of-the-art tool for property prediction from
materials composition, as demonstrated in the work by Wang et al [90]. The CrabNet architecture
incorporates a multi-head self-attention mechanism, originally introduced in the Transformer deep learning
model [101], which provides the added advantage of enhanced interpretability. Traditionally, a Transformer
transforms an input sequence to an output sequence using an encoder followed by a decoder. However,
CrabNet consists strictly of an encoder, followed by a number of Residual blocks [102]. Moreover, instead of
a sequence of words, CrabNet operates on a bag of atoms, and consequently, instead of using a positional
encoding of the input, it encodes the relative amounts of atoms present.

The input to the model thus consists of a material’s composition. Formally, the input, Xin ∈ Rn×din ,
consists of din-dimensional representations for the n constituent elements of the composition. The first step
involves the encoding of the relative amounts of atoms into Xin, referred to as fractional encoding (see [90] for
more details), resulting in Xenc ∈ Rn×dmodel , where dmodel is given as a hyperparameter. This is followed by the
sequential application of a number of Transformer blocks. Each Transformer block begins by performing a
multi-head self-attention operation. (figure 1) The self-attention operation allows the model to learn to
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Figure 2. (a) Components of the Transformer block. (b) A depiction of how additional features, such as band gap, are
incorporated into the CrabNet architecture. The addition operation refers to element-wise addition. The projection of the feature
involves trainable parameters.

attend to the relationships between the atoms of the composition, in the context of the task. The ‘attention
weights’ are encoded into a n× nmatrix, associated with each of h attention heads, by applying the softmax
operation to a scaled dot-product of a query, Qi ∈ Rn×dK , and a transposed key, KT

i ∈ RdK×n, where
dK = dmodel/h specifies the key (and query) dimension for an attention head.

The Transformer block follows the multi-head self-attention operation with layer normalization [103],
dropout [104], and feed-forward ReLU operations (figure 2(a)). The output of a Transformer block,
Xout ∈ Rn×dmodel , thus consists of the same dimensions as the input, which allows multiple Transformer blocks
to be connected serially.

Since it may also be desirable to provide additional information beyond composition to the model, we
augment the CrabNet architecture so that additional features may be provided. There are a number of ways
this could be accomplished, but we choose to borrow an approach from computer vision [105], and perform
a projection on v input features, u ∈ Rv, followed by a tiling operation, so that the resulting projected
features, P ∈ Rn×dmodel , have the same dimensions as the output of a Transformer block. Finally, we perform

element-wise addition, P+X(N)
out , where N is the number of Transformer blocks, and X(N)

out denotes the output
of the last Transformer block (figure 2(b)). While any number of extra features may be supplied to the model
this way, in this work, we (optionally) supply a single feature, the band gap Eg, associated with the material.

Finally, the output P+X(N)
out is given to three separate output heads. Each output head consists of a series

of Residual blocks, followed by a fully connected linear layer that produces the final predictions for each of S,
σ, and PF. This multi-head architecture has advantages in terms of convenience, efficiency, and also usually
provides better overall performance on the task when compared to using a separate (single-head) model for
each property predicted. (See supplementary table 1 for a comparison of the performance of architectures
with different output head numbers.) For clarity, and to differentiate it from the original CrabNet
architecture, we refer to this model as Compositionally-restricted attention-based ThermoElectrically-
oriented Network (CraTENet); its architecture is illustrated in figure 3.

The CraTENet model thus expects a dataset consisting of compositions, Xi ∈ Rn×din , and associated
thermoelectric transport properties, ySi ,y

σ
i ,y

PF
i ∈ Rm, where ySi , y

σ
i , and y

PF
i , represent the S, σ, and PF

transport values, respectively, at all temperatures, doping levels and doping types, each anm-dimensional
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Figure 3. The multi-head attention-based architecture, CraTENet, used in this study. Each of the three output heads are
multi-valued, containing the prediction of the Seebeck (S), electrical conductivity (σ), and power factor (PF), at different
temperatures, doping levels, and doping types.

vector. Optionally, a band gap, Egi ∈ R, may be associated with Xi. The dataset is thus {((Xi,Egi),(y
S
i ,y

σ
i ,y

PF
i ))

| 1⩽ i ⩽ k}, where k is the number of examples.
As in the CrabNet and Roost models, the CraTENet model learns the heteroscedastic aleatoric

uncertainty (i.e. how the variance of the predicted variable depends on the independent variables), explicitly
through the loss function [106, 107]. Here, the calculated variance is a measure of the uncertainty associated
with the incompleteness of the descriptor used (which is why the calculated variance decreases considerably
when the band gap information is added to the descriptor). This variance is different from the epistemic
variance related to the quality of the model parameterization. Whereas the CrabNet and Roost models use a
Robust L1 loss to estimate the uncertainty, we find that a Robust L2 loss, which places an L2 distance on the
residuals, results in superior performance for this task (see supplementary note 2 and supplementary table
4). The loss, Lp, for a particular thermoelectric transport property p, is given by:

Lp =
1

2k

k∑
i=1

m∑
j=1

(ŷpij − ypij)
2 exp(− ln ŝpij)+ ln ŝpij (2)

where k is the number of examples in the dataset, andm is the number of components of the output vector
ypi . The prediction of the ith example is ŷpi , and ŷpij the jth component of the ith prediction (also considered

the predictive mean in this context). The corresponding target value is ypij . Finally, the predictive aleatoric

variance for the jth component of the ith prediction is given by ŝpij . The form of this loss arises from the
assumption that the uncertainty in the observations follows a Gaussian distribution. Also, the term
exp(− ln ŝpij) is used in place of the term 1/̂spij for numerical stability reasons, such as to avoid a potential
division by zero. Since the model utilizes a separate output head for each of the three thermoelectric
transport properties being learned, the overall loss, L, to be minimized is given by:

L= αLS +βLσ + γLPF (3)

where α, β, and γ are constants which weight the importance of each of the terms in the loss L. In this work,
α= β = γ = 1.

Finally, we also train a band gap predictor from composition, using the original CrabNet model and the
expanded band gap dataset described previously. The fact that the band gap predictor can be trained with a
much larger dataset than the one used for training the CraTENet model justifies our attempt to use the band
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gap as an additional input to CraTENet for the prediction of transport coefficients. As shown in the
section 3, if the band gap predictor is sufficiently accurate, the inclusion of the predicted band gap in the
CraTENet input can lead to overall performance enhancement, even if composition remains the only global
input of the model.

2.3. MLmodel training and evaluation
For all CraTENet and CrabNet models, the input, Xin, consisted of n= 8 elements, and was zero-padded if
the composition consisted of less than eight elements. Each element in the input was described with a
SkipAtom distributed representation [108] with dimensions din = 200. (We performed experiments, as
described in supplementary note 1 and supplementary table 3, to determine the performance of different
descriptors). The default architectural hyperparameters of the original CrabNet model were used without
further tuning. Specifically, both models consisted of h= 4 attention heads in each of three sequential
Transformer blocks; the hyperparameter dmodel was set to 512. The output (or output head) consisted of four
sequential Residual blocks, with 1024, 512, 256, and 128 nodes respectively. For all neural network training
procedures, a mini-batch size of 128 and a learning rate of 10−4 was used, which were derived from a
hyperparameter grid search. The Adam optimizer, with an epsilon parameter of 10−8, was used. [109] All
neural network models were implemented using the TensorFlow [110] and Keras [111] software libraries.

The input for the RF models was a descriptor described by Meredig et al [112], as implemented in the
Matminer software library [113]. It is a local descriptor of composition, containing properties such as atomic
fractions, electronegativities, and radii. In some experiments, we concatenate an unscaled band gap feature
to the descriptor. The RF model hyperparameters were determined using a grid search. The number of
estimators was set to 200, the maximum depth was set to 110, the maximum number of features was set to 36,
and bootstrapping was used. We used the implementation provided in the Scikit-learn software library [114].

Because the electrical conductivity values in the Ricci database are given per unit of relaxation time τ ,
which is an exceedingly small number (of the order of 10−15 s), the target values for σ and PF are numerically
quite large. The values also vary by orders of magnitude, reflecting the distribution across metallic,
semiconducting and insulating conductivity ranges. For these reasons, the models learn log10σ and log10PF
instead. All output targets are standardized by removing the mean and scaling to unit variance. The band
gap, when it is provided to the CraTENet model, is given in eV units and unscaled.

Neural network model training was carried out in one of two contexts: a 90–10 holdout experiment, or a
ten-fold cross-validation experiment. For 90–10 holdout experiments, we split the datasetD into a setA
consisting of 90% of the data, and a set B consisting of 10% of the data. For the neural network models, setA
was further split into a training set T consisting of 90% ofA, and a validation set V consisting of 10% ofA.
Early stopping was used (with a patience of 50) to determine the optimal number of epochs to train, using V
as the validation set. Then, the model was re-trained on all ofA for the number of epochs determined to be
optimal, again starting from random parameters. Test set B was then used to evaluate performance of the
re-trained model (see [115] for more information on this approach). The RF models were trained onA, and
evaluated on B. The same random seed was used throughout when creating the splits, to ensure identical
splits for all experiments.

For the ten-fold cross-validation experiments, we followed the same procedure as for the 90-10 holdout
experiments, except that we create ten mutually exclusive splits, each consisting of 10% ofD for testing and
90% ofD for training, using the same random seed for all experiments, and repeating the hold-out
procedure for each of the ten splits. The performance on B was averaged across the 10 splits to yield the final
performance of the model.

The objective of all neural network training experiments was to minimize either the Robust L1 or Robust
L2 loss. The objective of RF training was to minimize the mean squared error (MSE) criterion. The mean
absolute error (MAE) and coefficient of determination (R2) metrics were used to assess model performance.
To produce the final neural network models to be used for inference on composition space outside the
datasets used for training and evaluation, we train the models on all available dataD for a number of epochs
determined from the corresponding ten-fold cross-validation experiment, by averaging the number of
epochs required for each fold. The final RF models to be used for inference were simply trained on all
available dataD.

2.4. DFT calculations
We performed a small number of DFT calculations in systems not found in the Ricci database, for testing
purposes. All calculations were carried out using the Vienna Ab initio Simulation Package (VASP) [116, 117],
and the calculation settings were chosen to follow the work of Ricci et al [92] as closely as possible. The
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Perdew–Burke–Ernzerhof [118] exchange-correlation functional, which is based on the GGA, was used in
conjunction with the projector augmented-wave method [119, 120] to describe the interaction between core
and valence electrons. All structures were fully relaxed until the force on each atom is below 0.02 eVÅ−1.
Spin polarization was on, and magnetic moments on the ions were initialized in a high-spin ferromagnetic
configuration, and then allowed to relax to the spin groundstate. A self-consistent static calculation was
performed using 90 k-points Å3 (in terms of reciprocal lattice volume) for systems with band gaps⩾0.5 eV,
and 450 k-points Å3 for systems with band gaps<0.5 eV. Subsequently, a non-self-consistent calculation was
performed to evaluate the band structures on a uniform k-point grid, with 1000 k-points Å3 for systems with
band gaps⩾0.5 eV, and 1500 k-points Å3 for systems with band gaps<0.5 eV. SOC was not considered.

The Seebeck coefficient, S, and the electrical conductivity, σ, were computed using the BoltzTraP2
software package [121]. Interpolation was first performed by sampling five irreducible k-points for each
k-point from the VASP output. The band structure was then integrated to obtain sets of Onsager coefficients.
The temperature range 100K–1300K was explored, in increments of 100K, at 5 different doping levels
(1016–1020 cm−3), for both n and p doping types. We verified that our ab initio procedure emulates the one
that was used to create the Ricci database by comparing our results to those of the Ricci database for a
number of compounds (see supplementary figure 3).

3. Results and discussion

3.1. Thermoelectric property prediction
Both the CraTENet model and a RF model were trained on the 34 628 entries of the Ricci database. To
establish the generalization error of the models, ten-fold cross-validation was performed. Since multi-target
regression of thermoelectric transport properties on composition is essentially a new task, unreported in the
literature, there are no existing benchmarks to compare with. We created simple baseline models, such as
linear regression with a Meredig feature vector, or simply taking the median of the target values, but these
models performed considerably worse than the ML models presented here. To simplify presentation, we leave
out the baseline results.

The results of ten-fold cross-validation are presented in table 1. For the remainder of this article,
‘CraTENet’ will refer to either the version of the model which does not accept a band gap input or to the
CraTENet model in general, depending on the context, whereas ‘CraTENet+gap’ will specifically refer to the
version of the model which requires a band gap input. As is evident from the results in table 1, the models
which utilize the band gap clearly outperform those which do not. The band gap is thus an important
predictor of thermoelectric transport properties. In both the case where band gap is or is not provided, the
CraTENet model outperforms the RF model in terms of MAE. The RF performs better in terms of R2, but
generally only when band gap is absent. Moreover, the models appear to perform slightly better when
predicting the logσ than the Seebeck. Prediction of the logPF appears to be the most problematic, with the
R2 for this property being noticeably lower than for the other two properties. The best thermoelectric
materials have Seebeck coefficients in the order of several hundreds of µVK−1, so the resulting MAE is still
reasonably small by comparison.

The results in table 1 represent predictions made for all temperatures, doping levels and doping types.
However, it is useful to understand how the models perform for different cross-sections of the data. For
example, the ten-fold cross-validation results as a function of doping type are presented in table 2. To obtain
the values in table 2, only the predictions for a given doping type were considered when computing the
metrics, across all doping levels and temperatures. The CraTENet model appears to perform better on the
p-type predictions, though it depends on which metric one considers. In figure 4, ten-fold cross-validation
results are presented as a function of temperature and doping level. It is interesting (and useful to know) that
the PF predictions are worse, in terms of R2 values, at lower temperatures and higher doping levels. The
MAE, on the other hand, does not show significant variations with the conditions of temperature and
doping, remaining constant at around 0.40 for logPF. The ability of the model to find the most promising
compounds for further study depends on the magnitude of the error relative to the width of the distribution
of values. If the absolute error is roughly constant, the ability of the model to discriminate between
compounds can be expected to be worse for a dataset that is more narrowly distributed. In this sense, the R2

is a better metric because it is related to the ratio between the MSE and the variance. Supplementary figure
14 shows that at high doping levels the distribution of values is narrower, and therefore the R2 (as well as our
ability to select the best compounds) decreases. The effect of temperature is a bit less pronounced, but
because increasing temperature also tends to widen the distribution, the R2 is slightly better at high
temperatures. The variations in the distribution of PF at different conditions are related to the balance
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Table 1. Ten-fold cross-validation results for each of the transport properties for the CraTENet and Random Forest (RF) models, both
with and without a provided band gap, in terms of MAE and R2. Each value represents the mean result across ten folds, across all
temperatures, doping levels and doping types. Bold values represent the best result for a class of models (i.e. with or without band gap)
for a particular property.

S log σ log PF

MAE (µVK−1) R2 MAE R2 MAE R2

CraTENet 114 0.780 0.576 0.768 0.452 0.616
RF 141 0.798 0.696 0.780 0.476 0.632

CraTENet+gap 49 0.962 0.260 0.968 0.380 0.731
RF+gap 54 0.961 0.301 0.964 0.398 0.737

Table 2. Ten-fold cross-validation performance of the CraTENet model as a function of doping type. Each value represents the mean
result for each doping type across all ten folds, across all temperatures and doping levels. Bold values represent the best result between
p- and n-doping types for a class of models (i.e. with or without band gap) for a particular property.

S log σ log PF

Doping MAE (µVK−1) R2 MAE R2 MAE R2

CraTENet p-type 119 0.636 0.589 0.775 0.465 0.631
CraTENet n-type 109 0.627 0.562 0.758 0.439 0.594

CraTENet+gap p-type 49 0.945 0.260 0.972 0.388 0.747
CraTENet+gap n-type 50 0.925 0.260 0.962 0.371 0.709

Figure 4. Ten-fold cross-validation performance (R2) of the CraTENet model as a function of temperature and doping level. On
the left, each point represents the mean performance for each temperature across all ten folds, across all doping levels and doping
types. On the right, each point represents the mean performance for each doping level across all ten folds, across all temperatures
and doping types. The dotted series represent the model’s results without a provided band gap.

between the Seebeck coefficient and the conductivity in metallic vs. gapped materials in the calculations of
[92]; further details can be found in the supplementary material.

To understand how the predictions compare to the ‘true’ values (i.e. the target DFT values), and how the
prediction errors are distributed, it is useful to plot the true versus the predicted values, and also the
distribution of absolute errors, as in figure 5. The plots show that most predictions lie close to the true values.
Moreover, the distribution of absolute errors indicates that the majority of errors are less than the overall
MAE values.

As the CraTENet model performs best when access to a band gap is available, it is important to
understand how the performance of the model depends on the quality of the band gap provided, since, in
many contexts, an experimental or ab initio band gap may not be available. In screening scenarios, the band
gap could originate from a predictive model. Thus, to understand how the CraTENet model depends on the
quality of the band gap, we performed sensitivity experiments, by incrementally degrading high quality band
gaps (i.e. derived from an initiomethods) by adding Gaussian noise, and then supplying these ‘lower-quality’
band gaps to the model. The results are presented in figure 6. In the figure, the horizontal axis along the top
of the plot represents the resulting MAE (in eV) after a certain percentage of noise has been added to the
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Figure 5. True values vs. predicted values of the test set of a 90–10 holdout experiment using the CraTENet+gap model, for each
of the transport properties, across all temperatures, doping levels, and doping types. Each plot contains 450 190 points, as there
are 3463 compositions in the test set, each with 130 (13 temperatures× 5 doping levels× 2 doping types) associated values. The
inset plots depict the distribution of absolute errors.

band gaps. For example, when 10% noise has been added to the ab initio band gaps, the MAE when
comparing these corrupted gaps to the true gaps is 0.065 eV. Figure 6 shows, as might be expected, that when
more noise is added to the band gaps, the performance of the model falls. However, some thermoelectric
transport properties are more robust (or more sensitive) to changes in the band gap quality. For example, in
the case of the prediction of the Seebeck, even with band gaps exhibiting an MAE of 0.30 eV, the model is still
able to achieve an R2 of 0.85, in comparison to an R2 of below 0.80 when no band gap is provided. However,
in the case of logσ, the model is much more sensitive. Current state-of-the-art band gap predictors that
operate on composition alone typically achieve an MAE of 0.30–0.45 eV [122]. However, band gap predictor
performance is expected to improve over time, and this will further increase the utility of the CraTENet
model in screening scenarios with predicted band gaps.

3.2. Band gap prediction
A dataset consisting of compositions and their corresponding DFT-derived band gaps was formed by taking
all of the unique compositions in the Materials Project, and consisted of 89 444 entries. A CrabNet model
was trained on this dataset, using the minimization of the Robust L1 loss as the objective. To establish the

10



Mach. Learn.: Sci. Technol. 4 (2023) 015037 L M Antunes et al

Figure 6. Performance of the CraTENet+gap model (in terms of R2) as a function of band gap quality. A 90–10 holdout
experiment was performed, and the actual gaps in the test set were corrupted by adding increasing amounts of Gaussian noise,
before the performance of the model was assessed. The dotted lines represent the performance of the CraTENet model without a
provided band gap.

generalization error of the model, ten-fold cross-validation was performed (as described in the Methods).
Across the ten folds, the model achieved a mean R2 of 0.71, and a mean MAE of 0.38 eV. A final model was
trained on all 89 444 entries for 101 epochs, which was determined to be the ideal number of epochs required
(i.e. the mean number of epochs required across the ten folds). This band gap predictor was subsequently
used to provide band gaps when scanning composition space where structure and band gaps were unknown.

3.3. Searching composition space for new thermoelectrics
3.3.1. Materials project compounds not in the Ricci database
Of the 126 335 structures we obtained from the Materials Project, we derived 89 444 unique compositions.
Since the compounds in the Ricci database originate from the Materials Project, we obtained 54 816 unique
compositions when removing the compositions found in the Ricci database. This collection of 54 816
compositions forms a sizeable and convenient search space, since GGA band gaps have already been
computed for these compounds, and their structures are known. Moreover, we verified that the distributions
of compositions in this dataset and the Ricci database are similar (see supplementary figure 2). Thus, we
apply our CraTENet+gap model to this space, in an attempt to surface novel compounds which may
represent promising thermoelectrics. We verify the quality of our predictions by performing ab initio
calculations for a small subset of these compounds.

Making predictions for tens of thousands of compounds with the CraTENet model is computationally
inexpensive in comparison with ab initio calculations, since inference is fast, aided by the use of GPUs and
the inherent parallelism in neural networks. After performing inference on this space, we selected 23
materials from this collection that spanned a range of different thermoelectric properties and band gaps. For
example, the predicted Seebeck values ranged from−1200 to 1200 µVK−1. When comparing the values
produced using the CraTENet+gap model and those obtained through ab initiomethods, we found that the
R2 was between 0.87 and 0.88, and the MAE was between 72 and 79µVK−1 (figure 7 and supplementary
figure 15). Although the agreement is generally good, there are some outliers (notably related to
compositions SbTeIr and LiNbN2). The performance of the model at specific compositions is difficult to
rationalise, as it reflects both how well similar compositions are represented in the training set and the error
related to the incompleteness of composition as a descriptor.

Moreover, we extracted the top 1000 compounds by predicted PF, for each of p and n doping types (the
lists are provided in the dataset accompanying this article). We selected three p-type selenides for performing
ab initio calculations: GaCuTeSe, InCuTeSe, and CeSbSe. These compounds do not appear to have been
studied as thermoelectrics before, but they seem promising as they include elements like Cu, In, Sb, and Te
that are present in well-known thermoelectrics. After carrying out ab initio calculations, we found generally
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Figure 7. Seebeck coefficients at 700K predicted with CraTENet+gap vs. those computed using the ab initio approach, for 23
Materials Projects compounds not found in the Ricci database, with (a) n-type doping, and (b) p-type doping. Each point
represents a particular compound at a particular doping level (e.g. SbTeIr at 1020 cm−3).

good agreement with the CraTENet predictions (figure 8; see supplementary figures 4–9 for more
comprehensive plots of the predictions).

3.3.2. Hypothetical selenides
Since the CraTENet model requires only composition as input, it is conceivable that arbitrarily large
hypothetical composition spaces could be generated and then processed by the model. SMACT is a software
library that facilitates the generation of composition spaces, while adhering to chemical bonding rules,
resulting in compositions which are chemically sensible [123]. Selenium-based materials are very promising
thermoelectrics, because they exhibit similar properties as record-holding thermoelectric tellurides, but with
the advantage that Se is much more Earth-abundant and cheaper than Te. We then chose to focus on creating
a composition space of ternary selenides. Using SMACT, we generated 269 846 ternary selenide
compositions, containing elements with an atomic number less than 84 (to avoid the heavy radioactive
elements). The CraTENet and CraTENet+gap models were then used to make predictions of the
thermoelectric transport properties of these compositions. As the CraTENet+gap model requires a band
gap, we use our composition-only CrabNet band gap predictor as the source of the band gaps for this space.
Since there is uncertainty in the band gap prediction, we make a separate prediction of thermoelectric
transport properties using the predicted gap, the predicted gap plus the standard deviation, and the predicted
gap minus the standard deviation. We find that this technique is useful for understanding the sensitivity of
the predictions to the band gap value for a particular composition.
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Figure 8. Predictions of the Seebeck and logσ for GaCuTeSe using the CraTENet models and the ab initio procedure, for p-type
doping, at a level of 1019 cm−3. The band gap value used, 0.387 eV, was obtained from the Materials Project. The shaded regions
represent the± standard deviation (i.e. the square root of the predicted variance).

Having made predictions on these SMACT-generated selenides, we then rank the compositions by PF (as
described in the previous section). We make the top 1000 compositions publicly accessible in the code and
dataset repository accompanying this article. There are several interesting selenides in that list, involving
elements like bismuth (e.g. LiBiSe2) or thallium (e.g. NaTlSe2) which are often present in known
thermoelectric materials. To the best of our knowledge, these compounds have not been studied as
thermoelectrics in the literature. To validate the model’s predictions, we carried out ab initio calculations on
these two compounds, given that their structures are reported in the OQMD database [43]. A comparison of
the predictions and the ab initio values for each is provided in figures 9(a) and (b). (See also supplementary
figures 10–13 for more comprehensive plots of the predictions).

In the absence of DFT-calculated band gaps as input, the performance of the CraTENet model for these
compounds is not as impressive in predicting the DFT-calculated values of the transport coefficients. The
model using the predicted band gaps as an input seems to perform generally better than the model with no
gap, but the deviations are still considerable, especially at high temperatures. All models, for example,
overestimate the electrical conductivity of LiBiSe2 by at least half an order of magnitude. Still, the DFT
calculations confirm, within their own limitations, that these compounds have attractive values of the
electronic transport coefficients; they deserve further investigation, either using more accurate theoretical
predictions with methods beyond the GGA and the CRTA, or experimentally. Clearly, the main use of the
methods presented here cannot be the quantitative prediction of the transport properties of individual
compounds, but rather the identification of interesting candidates in unexplored regions of the
compositional space.
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Figure 9. Predictions of the Seebeck and logσ for (a) LiBiSe2, and (b) NaTlSe2 using the CraTENet models and the ab initio
procedure, for n-type doping, at a level of 1020 cm−3. Predicted band gap values were used: blue represents the initial prediction,
green represents the prediction plus the predicted standard deviation, and red represents the prediction minus the predicted
standard deviation (i.e. square root of the predicted variance).

4. Conclusions

Approaches based on HTS combined with ML seem promising for suggesting novel candidate materials,
since very large areas of chemical space can be examined quickly and efficiently. Here, we have shown that
such an approach can be used to identify promising candidate thermoelectric materials based on the
screening of potential compositions only, optionally supplemented with band gaps.

Several aspects of the approach described here contribute to its utility. First, the use of multi-output
regression is helpful, and well-suited to the problem, since thermoelectric transport properties are dependent
on factors such as temperature, doping level, and doping type. Conversely, an approach that requires
parameters such as the temperature, doping level and doping type as input is problematic, since it increases
the dimensionality of the input space, and also leads to inputs that resemble each other closely, as a result of
the combinatorial nature of such a dataset [124].

Second, we believe that regression is a more useful choice for this learning task when compared to
classification, in the context of searching for new materials. Several existing studies have involved the training
of classification models of thermoelectric properties [53, 125]. These classification approaches involve
predicting whether a thermoelectric property is in a desired range, or above (or below) a specified threshold.
We argue that regression models, such as ours, provide a level of increased utility via their finer-grained
predictions, which is critical when sifting through many thousands of potential candidates. A binary
classifier simply provides no convenient means of differentiating the candidates labelled as promising.
Although there is room for improvement in the quality of the predictions made by our regression models, we
find that at the current performance level, the approach is effective at surfacing promising candidates.

Third, the use of an attention-based model, in combination with the Robust L2 loss, both leads to
superior performance and provides unique advantages. The learned attention weights provide an
opportunity to interpret the predictions made for a composition [126], and this could be a useful aspect of
using the CraTENet model when analysing individual materials (rather than in bulk, as we have focused on
here). Additionally, the Robust L2 loss is especially useful in that it allows the model to learn to quantify the
uncertainty arising from mapping the composition (and optionally band gap) to thermoelectric properties.
This provides users with a quantitative measure of the certainty of a prediction.
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Future work will involve follow-up investigations of the candidate materials proposed here, using more
rigorous ab initiomethods. Should the candidates continue to appear promising, attempts may be made to
synthesize the materials and measure their thermoelectric properties in the laboratory. In terms of the model
itself, future work may involve augmenting the objective so that it takes into account the shape of the
underlying manifold on which the multiple target values exist [127]. It is important to note that optimal
thermoelectric transport properties are not the only criteria that establishes a material as a practical
thermoelectric; other properties, such as dopability and stability, need to be considered. Thus, the
computational discovery of novel thermoelectrics will be aided by the development of a suite of predictive
models.

It is clear that the approach we describe depends heavily on the quality of the data it is trained on. The
Ricci database was derived using theoretical constraints such as the CRTA for solving the Boltzmann
transport equation, and the GGA for the exchange correlation functionals, which have important limitations.
However, the approach we describe here can continue to be used with future databases of computed
thermoelectric properties that will be obtained with more accurate theoretical methods, with improved data
quality.

Finally, to demonstrate the predictions made by the CraTENet model, we have deployed an internet-
accessible web browser-based application, located at https://thermopower.materialis.ai, that allows a user to
submit a material’s composition and (optionally) its band gap, and returns thermoelectric transport
property predictions for the material, as made by the CraTENet model.
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