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Abstract

Moment of inertia, a fundamental concept in physics and engineering and a chief factor influencing the
rotational motion of objects, is the quantitative measure of the rotational inertia of objects. It is the
resistance that the objects exhibit to having their speed of rotation about an axis altered by the employment
of a turning force. This paper presents a reevaluation of the moment of inertia. By exploring the arithmetic
of zero and minus one factorial, we uncover the true essence of the particles involved in rotational motion.
Our innovative approach reconciles intuition with mathematical precision, revealing the hidden structure
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underlying moment of inertia. This breakthrough enables a deeper understanding of physical systems,
empowering researchers to tackle complex challenges with renewed confidence and creativity. Our work has
far-reaching implications for novel applications and innovations in physics and engineering, illuminating the
path for future discoveries.

Keywords: Moment of inertia; nothing; zero; minus one factoria; particles; infinite summation.
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1 Introduction

The moment of inertia, a fundamental concept in mechanics, has been extensively studied and applied in various
fields, including engineering, physics, and astronomy. However, the traditional understanding of this concept is
based on a simplistic model that neglects the intricate nature of reality [1], [2]. The infinite summation inherent
in the moment of inertia has long been a subject of concern, as it seems to contradict the finite values observed
in physical systems [3], [4], [5].

The objective of this paper is to reexamine the foundation of the moment of inertia, addressing the long-standing
paradox and providing a novel understanding of this fundamental concept. We aim to develop a new arithmetic
framework that incorporates the concepts of zero and nothing, enabling the reconciliation of infinite summations
with finite values.

Our approach is rooted in a rigorous analysis of the nature of infinity and the factorial of minus one. By exploring
the nuances of zero and nothing, we establish a coherent arithmetic framework that facilitates the computation
of infinite summations in a finite and meaningful way. This framework enables us to redefine the moment of
inertia, providing a novel foundation for understanding the rotational behavior of objects.

The paper is structured as follows: Section 2 deals with the concepts of zero and nothing, while Section 3
explores the infinite number (−1)!. Section 4 develops the arithmetic of zero and (−1)!, and Section 5 applies
this framework to the sum of powers of natural numbers. Finally, Section 6 presents a new foundation for
moments of inertia, reconciling the infinite with the finite.

2 Zero and Absolute Nothing

The discussions of all the various undertakings to apprehend the essence of nothing would make a long narrative.
The subject of nothing was discussed in the works of the Indian mathematicians, Bramagupta and Bhaskara,
but was taken seriously after the foundation of the edifice of the calculus was questioned, and two kinds of
nothings, absolute nothing and zero denoted 0, were noticed.

In 1716 John Craig claimed that the number zero 0 cannot be the absolute nothing [6],[7],[8],

. . . for infinite number of absolute nothings cannot make 1, but by 0 is understood an infinitely
small part, as in the calc. diff. dx is an infinitely small part of x, so that dx is as 0 to x. Not
that dx is absolutely nothing, for it is divisible into an infinite number of parts each of which is ddx.

To further elucidate his ideas, he continued:

But then it may be inquired what is the quotient that arises from the division of 1 by absolute nothing. I say
there is no quotient because there is no division. Therefore, it is a mistake to say the quotient is 1 or unity
undivided which is demonstrably false, neither is the quotient = 0. For properly speaking there is no quotient
and there it is an error to assign any.
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Here is what was written in a great Dictionary of Mathematics. We have excerpted some alluring comment
made by Davies and Peck from this Dictionary:

It is in consequence of confounding the 0 arising from dividing a by infinity with the absolute nothing that so
much confusion has been created in the discussions that have grown out of this subject.

The intellectual minds may find it difficult to make out a lucid distinction between the sources of the two kinds
of nothings and so confound one for the other. The grave consequence is the entrance of paradoxes in the use of
nothings in calculations. We must be careful, then, not to beg the question by assuming that the two nothings
are the same. It is, therefore, worth our while to examine in detail and very carefully the difference between
these nothings.

2.1 Absolute nothing

Absolute nothing means the complete absence of quantity. In the simplification of expressions or equations,
the expression +a − a vanishes, i.e it ceases to exist, and what remains is absolute nothing; the minuend and
the subtrahend cancel out each other. The symbol +a implies add a and the symbol −a take away a. Thus
the expression +a − a can be interpreted as ‘add a and then take it away’. Frankly speaking, the expression
+a− a is unworthy of any symbolic representation. There is nothing existing initially indicating a blank until a
is added. The addition of a is something introduced which is later removed by taking the a away. The system
returns to its initial state of blank, the existence of nothing. Thus the expression +a − a does not require a
symbol for its representation.

The expression (c+ 1)2 − c2 − 1 which equals c2 + 2c+ 1− c2 − 1, becomes, collecting like terms, the expression
c2 − c2 + 2c + 1 − 1. This expression is rewritten as 2c. The omission of the expressions c2 − c2 and 1 − 1 is
justified because the minuends cancel the subtrahends and vice versa.

Consider the problem of solving the equation 2x − 10 = 3 + x. To remove x from the right–hand side of the
equation, add −x to both sides. The equation becomes 2x− 10− x = 3 + x− x which becomes x− 10 = 3. To
remove −10 from the left–hand side, add +10 to both sides of the equation. Thus, we have x− 10 + 10 = 3 + 10
which becomes x = 13.

2.2 Zero

Zero is a number equivalent in value to absolute nothing. It may arise in the process of substituting a numerical
value for a variable in a mathematical expression. For every constant a there is exactly one assignable number
−a of the variable x such that in the evaluation of x + a at x = −a, we have −a + a = 0 where 0, called zero,
is a numerical value equivalent to the absolute nothing. Similarly, for every constant −a there is exactly one
assignable number a of the variable x such that in the evaluation of x− a at x = a, we have a− a = 0.

A more thorough mathematical study of 0 shows that new and really unexpected conclusions can be drawn.
The 0 is merely a symbol standing for the non-vanishing expression a− a, the difference of a and itself. When
we set x = a in the difference x − a we get the expression a − a, the difference of a and itself. The difference
a − a has a value equivalent to nothing but the expression itself can never vanish; the two a’s are conserved.
The ever existing nature of the expression stems from the fact that the two a’ s do not cancel out each other.
In fact, the two a’s remain in the expression as they are; only their difference is conceived. For this reason, the
expression a− a requires a single symbol to represent it. Since the difference of the two a’s is nothing we denote
the expression with the usual symbol 0 for zero. Inasmuch 0 represents an existing or non-vanishing expression
[8], it can divide itself, in which the result is unity, viz

0

0
= 1.
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If we interpret this 0 in the sense that is usually assigned to it, we come to the ridiculous conclusion that a zero
difference is the same as the void [8].

3 Minus One Factorial

3.1 Minus one factorial and zero as reciprocals of each other

Directly associated with the understanding on zero is the fact about minus one factorial, written as (−1)!. The
picture of 0 could not be complete without the description of (−1)!, its reciprocal. In the description of the
reciprocal, we are led to a number which cannot find a complete fulfilment in any property of real numbers.

Let our appeal be to combinatorics. We compute as follows.

x+ 1 = x+ 1

=
(x+ 1)x!

x!

=
(x+ 1)!

x!

Letting x = −1, we get

0 =
0!

(−1)!
.

Taking 0! = 1 we write

0 =
1

(−1)!

and hence

(−1)! =
1

0
;

minus one factorial is the reciprocal of zero and vice versa.

3.2 Duality property of zero

From our last result, we give another definition to 0, namely

0 =
1

(−1)!
.

This is a very remarkable definition of zero, denoted 0. Zero is a value representing nothing yet it is equal to
the quotient of something divided by something. The relation 0 = 1/(−1)! can be understood only as referring
to the fact that 0 has two natures, its nothing nature seen in the whole number 0 and its something nature seen
in its fractional number 1/(−1)!.

The evaluation of the expression x+1 at x = −1 makes it clear that 0 is equivalent in value to absolute nothing.
It is not sufficient, however, to regard it as a mere nothing. If 0 is thought of as absence of quantity, then it is
indeed hard to understand what is here meant by the result 0 = 1/(−1)!. But if 0 is not absolute nothing; if
it is an existent, then may we understand and with confidence hold to the vital fact that the fraction 1/(−1)!
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does not vanish and become void. The fraction in question must be honestly considered as a non-vanishing
expression. It cannot disappear into absolute nothing, nor can it be deleted or omitted whenever it appears.

The fraction 1/(−1)!, though equal to 0, carries with it the idea of existence. For it is absurd to regard as
absolute nothing the fraction of two quantities.

3.3 Absolute nothing and zero distinguished

The nothing from the take-away subtraction a − a on the one hand and nothing 0 from the division of a by
infinity on the other are of quite different kinds.

In the zero 0, we have a number, which seems at first to clash with absolute nothing, and which teaches us, lest
we should confound the nothings, not to deal with the zero 0 and absolute nothing as interchangeable. Absolute
nothing is absence of quantity and cannot therefore be expressed as ratio of two quantities. The zero 0, unlike
absolute nothing, is a ratio, that of unity to (−1)!. Thus whereas absolute nothing is blank, the zero 0 is an
existent, for it is absurd for a ratio to cease existence. We cannot conceive how the ratio of 1 to (−1)! can
become a blank.

3.4 Numerosity of minus one factorial

The scientific community traditionally accept (−1)! as undefined. This was arrived at due to Martin Ohm’s
analysis of 1/0. The result of this analysis was to place division by zero under the modern definition. This new
concept swept the expanse of the scientific community and through the decades has become so embedded in
human thought that to question its validity is immediate heresy.

The object of this subsection is to show that (−1)! is defined and demands the right of citizenship in the realm
of numbers.

3.4.1 Sum of harmonic series

The infinite series, a mathematical construct of paramount significance, burst into prominence during the era
of the conception of calculus, courtesy of the illustrious minds of Isaac Newton and Gottfried Wilhelm Leibniz.
However, preceding this epochal moment, a select few had delved into the realm of infinite series, among them
the erudite Pietro Mengoli of Bologna. In his magnum opus, Novae Quadraturae Arithmeticae (1650), Mengoli
probed the mysteries of infinite series, showcasing his acumen by demonstrating the divergence of the harmonic
series [9], [10].

The harmonic series, an infinite sequence of reciprocals of natural numbers, had long fascinated mathematicians:

1 +
1

2
+

1

3
+ · · · .

Mengoli’s ingenuity lay in dividing the terms of this series into an infinite number of groups, each aggregating to
a value exceeding unity. This tour de force revealed the divergence of the harmonic series, a finding that would
later influence the development of calculus.

Our aim here is to demonstrate that ln(−1)!, the natural logarithm of minus one factorial, is the sum of the
harmonic series, viz

1 +
1

2
+

1

3
+ · · · = ln(−1)!. (3.1)
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The possibility of such a relation as (3.1) is suggested by inspecting the Taylor series expansion of ln(x+ 1),

ln(x+ 1) = x− x2

2
+
x3

3
− · · · ,

and letting x = −1. Accomplishing these, we obtain the following:

ln 0 = −1− 1

2
− 1

3
− · · ·

− ln 0 = 1 +
1

2
+

1

3
+ · · · .

Employing ln(−1)! = − ln 0, we arrived at the required result

ln(−1)! = 1 +
1

2
+

1

3
+ · · · .

3.4.2 Confirmation of the sum of harmonic series

Let us now turn to the derivation of a famous formula in analysis in order to show to the reader that ln(−1)!
is a true number. There is a very interesting formula discovered by Euler in his 1776 paper, which presents a
beautiful means of computing γ. This formula is

1− γ =

∞∑
k=2

ζ(k)− 1

k

where γ is Euler’s constant and ζ(k) is zeta constant.

Euler derived the Maclaurin series expansion for ln(x!), which reads

ln(x!) = −γx+

∞∑
k=2

(−1)k
ζ(k)

k
xk, |x| < 1.

If we let x = −1 so that |x| = 1, an infringement of the proviso |x| < 1, then we obtain the result

ln(−1)! = γ +

∞∑
k=2

ζ(k)

k
.

We have already established that the natural logarithm of (−1)! is the sum of the harmonic series,
∑∞

k=1
1
k

. If
we then replace ln(−1)! with the sum

∑∞
k=1

1
k

, we procure for ourselves

∞∑
k=1

1

k
= γ +

∞∑
k=2

ζ(k)

k

which results in

1 +
∞∑

k=2

1

k
−
∞∑

k=2

ζ(k)

k
= γ

which in turn furnishes our required formula

38



Bismarck and Ufuoma; Asian Res. J. Math., vol. 20, no. 8, pp. 33-57, 2024; Article no.ARJOM.116431

1 +

∞∑
k=2

1− ζ(k)

k
= γ

or

1− γ =

∞∑
k=2

ζ(k)− 1

k
.

By this counterexample alone, all objections to the doctrine of the numerosity of (−1)! and hence 1/0 are
removed. Further instances that demonstrate that ln(−1)! is the sum of the divergent harmonic series are found
in the the papers [8], [9], [10].

As a helpful number in the determination of the infinite sum of the divergent harmonic series, (−1)! becomes
to us more and more real. It helps us to understand old facts and leads us to new ones. The attribution of
divergent infinite series to it is one step farther in the development of the mathematics of infinite series.

3.5 On sum of infinite number of unities

We assume the number 1 called a unit or simply unity to be defined. We next define the numbers 2, 3, 4, . . ..
The most natural mode of forming these numbers is to begin with joining 1 to itself and to this summation
another 1. Continuing in this manner, we obtain collections of units as follows

1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3,

and in general
1 + 1 + 1 + ·+ 1︸ ︷︷ ︸

n ones

= n. (3.2)

It is always possible to add 1 to any number however great the number is. As there are no limits to the extensions
of numbers, we observe that this pattern can be continued indefinitely, i.e. without stopping. It is, however,
further observed that the ultimate stage of this pattern is the infinite summation 1 + 1 + 1 + . . ..

We now have to define the operation

1 + 1 + 1 + . . . (3.3)

which consists in adding the number 1 infinite number of times.

In the previous subsection our attention was focused on the infinite sum of the divergent harmonic series. It is
possible that, from the Taylor series, we can form another divergent series which proves so important in finding
the sum of the infinite number of ones. If we differentiate both sides of that Taylor series, we obtain the new
Taylor series:

1

x+ 1
= 1− x+ x2 − x3 + · · · .

This is rewritten as

x!

(x+ 1)!
= 1− x+ x2 − x3 + · · · .
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We remember how we set x = −1 in the Taylor series in the previous subsection and obtain the sum of the
harmonic series. We do the same thing here, i.e set x = −1, and get the value of the infinite sum of the infinite
series of unities, viz

(−1)! = 1 + 1 + 1 + 1 + · · · .

The content of this result is much richer than we have been able to indicate. It conceals a depth revealed only
by careful investigation.

3.6 On the cardinal number of the infinite set of natural numbers

It has been shown in the theory of infinite set developed by Georg Cantor that any set that can be placed in a
one-to-one correspondence with the natural numbers will have the same number of elements (cardinal number)
as the set of natural numbers. It turns out that many infinite set of numbers have the cardinal number ℵ0 [11].

Let set S consists of summations of unities, and set N the set of natural numbers with cardinal number ℵ0, viz

N = {1, 2, 3, . . . ,ℵ0}.

Now, consider the one-to-one correspondence:

Set S↔ Set N

1↔ 1

1+1↔ 2

1+1+1↔ 3

1+1+1+1↔ 4

1+1+1+1+1↔ 5

and so forth. To each summation of unities in set S there corresponds its sum, a natural number in set N such
that the two sets are equally unending, and in exactly the same way. Hence, both sets have the same cardinal
number, namely, ℵ0. Since the final element of set S is 1 + 1 + 1 + · · · , it thus follow that

1 + 1 + 1 + 1 + · · · ↔ ℵ0

and hence

1 + 1 + 1 + 1 + · · · = ℵ0.

It turns out that since

1 + 1 + 1 + 1 + · · · = (−1)!,

the cardinality ℵ0 of the set of natural numbers is equal to minus one factorial, viz

ℵ0 = (−1)!.

Hence, the the set

N = {1, 2, 3, . . . ,ℵ0}
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becomes

N = {1, 2, 3, . . . , (−1)!}.

So, to the question, ‘how many numbers are there in the sequence of natural numbers 1, 2, 3, . . . , n, . . .? ’, we
answer ‘there are (−1)! of them’. This new view proves very successful and fruitful in the further development
of this work. How is it that this fact remained for so long obscured?

4 Arithmetic of Zeros and Minus One Factorial

4.1 Terminology

The zero 0 is the unit zero. It reciprocal (−1)! is the unit infinity.

A zero of order n is a zero of the form k ·0n where n is a positive integer and k is any finite number. The number
k is called the finite part of the zero. The expression 0n is called the unit zero part of the zero. The following
zero is of order 5 and has a finite part of 3: 3 · 05. Here are some more examples of zeros 4 · 0, 02, π · 0,−6 · 04.

The n th order of infinity is of the form k · (−1)!n where n is a positive integer and k is any finite number. The
number k is called the finite part of the infinite number. The expression (−1)!n is called the unit infinity part
of the infinite number. The following infinite number is of order 3 and has a finite part of 2: 2 · (−1)!3.

4.2 Arithmetic of zeros

To create an exact and consistent arithmetic of zero has acquired an extraordinary celebrity from the fact that
none has been created, but there is no reason to doubt that it is possible.

4.2.1 Equality of zeros

The zeros a · 0m and b · 0n are equal if and only if a = b and m = n.

4.2.2 Addition and subtraction

For the zeros a · 0m and b · 0m of the same order m,

a · 0m + b · 0m = (a+ b) · 0m

and

a · 0m − b · 0m = (a− b) · 0m.

For instance, take the third order zeros 2 · 03 and 7 · 03. Then,

2 · 03 + 7 · 03 = 9 · 03

and

2 · 03 − 7 · 03 = −5 · 03.
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The addition or subtraction of zeros of different orders cannot be reduced to any simpler form, and the
combination is therefore called compound zeros. For example,

2 · 03 + 7 · 05

consists of zeros of different orders. All we know of this compound zero is that its value is equivalent to absolute
nothing.

4.2.3 Scalar multiplication

The product of any zero, say a · 0m, and any scalar c (number c), is the zero ca · 0m obtained by multiplying c
by the finite part of the zero. For instance, 7 · 05 multiplied by 2 is 14 · 05.

4.2.4 Multiplication of zeros

For the zeros a · 0m and b · 0n, we get the multiplication operation

a · 0m × b · 0n = ab · 0m+n.

For instance,
2 · 03 × 7 · 04 = 14 · 07.

Addition, subtraction and multiplication of zeros give a zero.

4.2.5 Division of zeros

The immortal Brahmagupta asserted in his famous work [12] that

Zero divided by negative or positive is either zero or is expressed by a fraction with zero as numerator and the
finite quantity as denominator. . . . .

His axiom may be simply expressed as

0

A
=

{
0,

0

A

}
.

The idea of leaving the expression

0

A

as indicated, and not replacing it with 0, is to some a very great paradox if not an absurdity.

Bhaskara II was the first to give meaning to Brahmagupta’s axiom, for setting

A =
1

B

gives

B · 0 = {0, B · 0} .

From this new result Bhaskara ventured the publication of the following notion: [13], [8] [14]:
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When a number (B) is multiplied by cipher (0), the product (B · 0) is cipher (0); but in case any operation
remains to be done, cipher (0) is considered to be the multiplier (i.e. the expression B · 0 is to be retained), and
if cipher (0) also becomes the divisor (in the remaining operation), the number (B) is considered unchanged (i.e.
B · 0/0 = B in the remaining operation where 0 is a divisor).

Suppose the product B · 0 is the result of an operation, this multiple of 0, i.e. B · 0 is equivalent to absolute
nothing. But if an upcoming operation requires the result of the previous operation, absolute nothing to which
B ·0 is equivalent should not be used, but the original form of expression, that is, the multiple of 0, B ·0, should
rather be used in the new operation.

In order to exhibit more clearly this principle, we break it into two laws:

Law 1: The law of retention of the multiple of 0, and
Law 2: The law of restoration of the finite multiplicand.

The law of retention of the multiple of 0 states that

If an operation results in a multiple of 0, this multiple should be retained and used in further operation on 0.

The law of restoration of the finite multiplicand states that:

If in this further operation on 0, 0 appears as a divisor and the multiple of 0 from the previous
operation acts as a dividend, the 0’s cancel out and the result is the finite multiplicand of the
multiple of 0.

It should be noted that the two 0’s cancelled out are self and the same; it is merely required to cancel them out.
This cancellation is in line with Bhaskara’s method of dividing numbers in his Lilavati :

If the divisor and the dividend have a common factor, then the common factor can be cancelled
and the division is carried out with the remaining factors.

Thus, in figuring with zero, the above principle of Bhaskara for handling 0 is valuable : It is called the Principle
of Impending Operation on Zero [13]. From this principle, it can be inferred that the unit zero, as already
noted, is an existential, capable of dividing itself to give unity, viz

0

0
= 1.

This identity 0/0 = 1 may appear surprising to those familiar with only recent writings in mathematical ideas.
It may seem to indicate a crudity of view which has long been antiquated. The tendency in more recent times
has been to avoid any reference to division by zero.

Now according to the aforementioned Principle of Bhaskara, zero 0 is equivalent to absolute nothing, the blank,
but wears the true nature of quantities so as to be as it were double, and to have two separate characters.
Bhaskara expressly acknowledged both natures. This delightful principle, so redolent of the day of Bhaskara, is
unfortunately absent from our present day mathematics.

We turn at once to the division property of zero. Based on the identity 0/0 = 1, we say that for the zeros a · 0m

and b · 0n, we have the division operation

a · 0m ÷ b · 0n =
a

b
· 0m−n.

If m > n, the quotient is a zero and if m < n, the quotient is infinity. If, however, m = n, the quotient is the
finite number a/b.
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To avoid paradoxes in figuring with zeros of higher powers, we extend the principle of Bhaskara to powers of
zero: “If in some mathematical calculations, the zero 0 is likely to occur frequently, then, though a ·0n is nothing
where a is a finite number and n is any positive number, one should maintain the form a · 0n in the rest of the
operations until the final operation with 0 is reached. This is because if a finite number is multiplied by a power
of zero and divided by the same power of zero, then the result is the finite number”.

4.3 Arithmetic of infinity

Though we can never count infinite (endless) number of things, we can form a true and accurate arithmetic
of it. Infinite numbers occur in mathematics, engineering and the sciences and therefore the knowledge of the
operations on them is essential. Like finite numbers, infinite numbers can be added, subtracted, multiplied, and
divided. Our desire here is, therefore, to put infinity on equal footing as ordinary numbers. Once this has been
done, infinity is a perfectly acceptable candidate for mathematical analysis.

4.3.1 Equality of infinities

Two infinite numbers a · (−1)!m and b · (−1)!n are equal if a = b and m = n, that is, their finite parts are equal
and their order parts are equal.

4.3.2 Addition and subtraction

The sum and difference of two infinite numbers a · (−1)!m and b · (−1)!m of the same order are defined by adding
or subtracting their finite parts:

a · (−1)!m + b · (−1)!m = (a+ b) · (−1)!m

and

a · (−1)!m − b · (−1)!m = (a− b) · (−1)!m.

For instance,

3 · (−1)!4 + 2 · (−1)!4 = 5 · (−1)!4

and

3 · (−1)!4 − 2 · (−1)!4 = (−1)!4.

The sum or difference of infinite numbers of different powers can be reduced to no simpler form and so called
compound infinity. For example,

3 · (−1)!7 + 2 · (−1)!4

is a compound infinity as it consists of two infinite numbers of difference orders 7 and 4. All that should be said
of this expression is that it is infinitely great.

4.3.3 Scalar multiplication

The product of the infinite number a · (−1)!m and the scalar c (number c) is obtained as follows:

c× a · (−1)!m = ca · (−1)!m.
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For example,

3× 5 · (−1)!2 = 15 · (−1)!2.

4.3.4 Multiplication of infinite numbers

For the infinities a · (−1)!m and b · (−1)!n, we have

a · (−1)!m × b · (−1)!n = ab · (−1)!m+n.

As an instance, we have

4 · (−1)!5 × 2 · (−1)!6 = 8 · (−1)!11.

4.3.5 Division of infinite numbers

For the infinite numbers a · (−1)!m and b · (−1)!n, we have

a · (−1)!m ÷ b · (−1)!n =
a

b
· (−1)!m−n.

If m > n, the quotient is an infinity and it m < n, the quotient is a zero. If, however, m = n, the quotient is a
finite number (a/b). As an instance, we have

4 · (−1)!5 ÷ 2 · (−1)!6 = 8 · (−1)!−1 = 8 · 0.

4.4 On the property 0 · (−1)!

It must be noted as remarkable, looking to the grandeur of the property 0 · (−1)! = 1 and its apparently direct
testimony to the true nature of (−1)!, that the product of 0 and (−1)! equals unity. This property is the germ
that connects the arithmetic of zeros, finite numbers and infinite numbers.

Let a, b, m and n be any finite numbers. Then

1. k · 0m × l(−1)!n = kl · 0m−n m > n

2. k · 0m × l(−1)!n = kl(−1)!n−m m < n

3. k · 0m × l(−1)!m = kl

5 Sums of Powers of All Natural Numbers

It is a well-established fact, familiar to those versed in the annals of mathematical history, that the renowned
Swiss mathematician, Jakob Bernoulli [9], [10] disseminated his landmark solution to the longstanding problem
of determining a general formula for the sums of powers of natural numbers in his seminal work.

In the ancient era, mathematicians such as Archimedes and Euclid endeavored to calculate the areas of various
geometric figures, including triangles, circles, and polygons. However, the challenge of finding the area enclosed
by a curve, particularly the parabola, remained an open problem.
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During the Renaissance, mathematicians like Bonaventura Cavalieri and Johannes Kepler made significant
progress in developing methods to calculate the areas under curves. Cavalieri’s work, Geometria Indivisibilibus
(1635), introduced the concept of indivisibles, which laid the groundwork for the development of calculus.

In the 17th century, the problem of finding the area enclosed by a curve became a central focus of mathematical
inquiry. The parabola, in particular, drew the attention of prominent mathematicians like Galileo Galilei, René
Descartes, and Pierre Fermat.

Jakob Bernoulli’s work on the sums of powers of natural numbers was instrumental in addressing this problem.
By establishing a general formula for these sums, Bernoulli provided a crucial tool for calculating the areas under
curves. Specifically, his formula enabled the determination of the area enclosed by a parabola, a feat that had
eluded mathematicians for centuries.

Bernoulli’s breakthrough paved the way for later mathematicians, such as Isaac Newton and Gottfried Wilhelm
Leibniz, to develop the methods of calculus. Bernoulli, in his Art Conjectandi of 1713, showed that

n∑
k=1

kp = 1p + 2p + 3p + · · ·+ np

=
1

p+ 1
np+1 +

1

2
np +

n

2!
B2n

p−1 +
p(p− 1)(p− 2)

4!
B4n

p−3 + · · ·

where B2 =
1

6
, B4 = − 1

30
, and so on are constitute a sequence of Bernoulli numbers, a sequence of rational

numbers that play a pivotal role in numerous mathematical contexts.

Bernoulli’s work on the sums of powers of natural numbers, and its connection to finding the area enclosed by a
curve, has left an indelible mark on the annals of mathematical history, serving as a testament to his unwavering
dedication and unbridled passion for mathematical excellence.

We turn at once to finding the infine sums of powers. We start by exhibiting a one-to-one correspondence between
the natural numbers and their pth powers. Our strategy will be to sketch such a correspondence, showing exactly
how each natural number is paired with a unique power of the natural number. In the correspondence

1↔ 1p

2↔ 2p

3↔ 3p

4↔ 4p

the pairing of the natural number n with np continues indefinitely, with neither set containing any element not
used up in the pairing process. So, even though the set of powers of natural numbers seems to be a proper
subset of the set of natural numbers and thus should have smaller cardinal numbers the above correspondence
proves that both sets have the same cardinal number (−1)!. Thus, if (−1)! is the last ordinal in the set of natural
numbers, (−1)!p is the last ordinal in the set of powers of the natural numbers so that the set can be properly
written as

{1p, 2p, 3p, . . . , np, . . . (−1)!p}.

It remains to investigate whether or not the infinite summations

1p, 2p, 3p, . . . and 1p, 2p, 3p, . . . , (−1)!p
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will give the same sum for values of p > 0?. For the case p = 0, we have obtained the theorem: The summation
of unities up to infinity is

1 + 1 + 1 + · · · = 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
(−1)! ones

= (−1)!

We consider only the simple case:

1 + 2 + 3 + . . . (5.1)

and

1 + 2 + 3 + . . .+ (−1)! (5.2)

The summation of all the natural numbers is

1 + 2 + 3 + · · ·+ (−1)! =
(−1)!2

2
+

(−1)!

2

and not

1 + 2 + 3 + · · · = (−1)!2

Proof. To create the series (5.1), we start with the following pattern of numbers

(1) (1) = 1

(1 + x) (1 + x) = 1 + 2x+ x2(
1 + x+ x2

) (
1 + x+ x2

)
= 1 + 2x+ 3x2 + 2x3 + x4(

1 + x+ x2 + x3
) (

1 + x+ x2 + x3
)

= 1 + 2x+ 3x2 + 4x3 + 3x4 + 2x5 + x6

and so on. If we set x = 1, we obtain

(1) (1) = 1

(1 + 1) (1 + 1) = 1 + 2 · 1 + 12(
1 + 1 + 12) (1 + 1 + 12) = 1 + 2 · 1 + 3 · 12 + 2 · 13 + 14(

1 + 1 + 12 + 13) (1 + 1 + 12 + 13) = 1 + 2 · 1 + 3 · 12 + 4 · 13 + 3 · 14 + 2 · 15 + 16

and so on. This becomes

(1) (1) = 1

(1 + 1) (1 + 1) = 1 + 2 + 1

(1 + 1 + 1) (1 + 1 + 1) = 1 + 2 + 3 + 2 + 1

(1 + 1 + 1 + 1) (1 + 1 + 1 + 1) = 1 + 2 + 3 + 4 + 3 + 2 + 1

and so on. In general, the product

(1 + 1 + 1 + · · ·+ 1) (1 + 1 + 1 + · · ·+ 1)
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where there are n ones in both factors gives the series

1 + 2 + 3 + · · ·+ (n− 1) + n+ (n− 1) + · · ·+ 3 + 2 + 1.

The ultimate product of the above pattern is

(1 + 1 + 1 + · · · ) (1 + 1 + 1 + · · · )

whose expansion should give

1 + 2 + 3 + · · ·+ ((−1)!− 1) + (−1)! + ((−1)!− 1) + · · ·+ 3 + 2 + 1.

Since 1 + 1 + 1 + · · · = (−1)!, we write

(−1)!2 = 1 + 2 + 3 + · · ·+ ((−1)!− 1) + (−1)! + ((−1)!− 1) + ...+ 3 + 2 + 1 · · · (5.3)

Consider the infinite series expansion (
1

x+ 1

)2

= 1− 2x+ 3x2 − · · · .

If we set x = −1, we get (
1

−1 + 1

)2

= 1− 2(−1) + 3(−1)2 − · · ·

which becomes (
1

0

)2

= 1 + 2 + 3 + · · ·

which, setting 1/0 = (−1)!, gives

(−1)!2 = 1 + 2 + 3 + · · · (5.4)

Thus the series

1 + 2 + 3 + · · ·

is actually the series

1 + 2 + 3 + · · ·+ ((−1)!− 1) + (−1)! + ((−1)!− 1) + · · ·+ 3 + 2 + 1 · · · .

It may be supposed at first sight that the result (5.3) is incorrect, but a consideration of the following will alter
this assumption. The sum of the first n natural numbers is (n− 1)/2, that is,

1 + 2 + 3 + · · ·+ n =
n (n+ 1)

2

setting n = (−1)! gives

1 + 2 + 3 + · · ·+ (−1)! =
(−1)! ((−1)! + 1)

2
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which becomes

1 + 2 + 3 + · · ·+ (−1)! =
(−1)!2

2
+

(−1)!

2
. (5.5)

It is clear that the results (5.3) and (5.4) are different from the result (5.5). By means of (5.5) we can show that
(5.3) is valid.

We start with

1 + 2 + · · ·+ (−1)! + ((−1)!− 1) + · · ·+ 2 + 1

which can be split into two groups as follows:

(1 + 2 + · · ·+ (−1)!) + (1 + 2 + · · ·+ ((−1)!− 1)) .

The sum of this series is therefore

(−1)!2

2
+

(−1)!

2
+

((−1)!− 1)2

2
+

(−1)!− 1

2

which becomes

(−1)!2

2
+

(−1)!

2
+

(−1)!2 − 2(−1)! + 1

2
+

(−1)!− 1

2
.

Simplifying this completely gives

(−1)!2.

Observe that in the series

1 + 2 + 3 + · · · ,
which is actually the series

1 + 2 + 3 + · · ·+ ((−1)!− 1) + (−1)! + ((−1)!− 1) + · · ·+ 3 + 2 + 1,

the order of increasing magnitudes of the terms is broken after the (−1)!th term. It follows then that the series
1 + 2 + 3 + · · · cannot be interpreted as the summation of all the natural numbers. The summation of all the
natural numbers is 1 + 2 + 3 + · · ·+ (−1)! and its sum is (−1)!2/2 + (−1)!/2. �

It follows from our discussion above that the series.

1p + 2p + 3p + · · ·

differs from the series.

1p + 2p + 3p + · · ·+ (−1)!p.

for values of p > 0.

It remains, therefore, to find a closed formula for the series

1p + 2p + 3p + · · ·+ (−1)!p

49



Bismarck and Ufuoma; Asian Res. J. Math., vol. 20, no. 8, pp. 33-57, 2024; Article no.ARJOM.116431

Setting n = (−1)! in the Bernoulli’s general formula for sums of power already mentioned in this section, we
obtain

(−1)!∑
k=1

kp =
1

p+ 1
(−1)!p+1 +

1

2
(−1)!p +

p

2!
B2(−1)!p−1 +

p(p− 1)(p− 2)

4!
B4(−1)!p−3 + · · · .

For p = 1, 2, 3, . . ., we have respectively

(−1)!∑
k=1

k =
1

2
(−1)!2 +

1

2
(−1)!

(−1)!∑
k=1

k2 =
1

3
(−1)!3 +

1

2
(−1)!2 +

1

6
(−1)!

(−1)!∑
k=1

k3 =
1

4
(−1)!4 +

1

2
(−1)!3 +

1

4
(−1)!2

and so forth.

6 A Novel Foundation of Moments of Inertia

6.1 A brief history of infinite division of objects

The quest to understand the fundamental building blocks of matter has been a longstanding and contentious
pursuit, spanning centuries and sparking intense debates among scholars. The ancient Greeks, in particular,
were drawn to this inquiry, with Democritus being a prominent figure in this intellectual tradition [15].

The concept of dividing matter into smaller and smaller particles, ad infinitum, has been a central theme in this
discourse. Democritus proposed the existence of indivisible particles called atoms, which could not be further
divided. However, this idea was met with skepticism by other philosophers like Aristotle, who argued that
matter was continuous and could be divided infinitely.

As the centuries passed, mathematicians and philosophers continued to grapple with the nature of matter and
its divisibility. The concept of infinitesimals, or infinitely small quantities, emerged as a way to describe the
smallest particles of matter. Mathematicians like Bonaventura Cavalieri and Johannes Kepler developed methods
to calculate with infinitesimals, laying the groundwork for the development of calculus.

In the 17th century, the debate surrounding the nature of matter and its divisibility intensified. René Descartes
proposed the idea of indefinite divisibility, suggesting that matter could be divided infinitely without reaching
a fundamental limit. On the other hand, Gottfried Wilhelm Leibniz argued that matter was composed of
infinitesimal particles, which he called ”monads.”

The development of calculus by Isaac Newton and Leibniz further complicated the issue, as the use of infinitesimals
and limits seemed to imply that matter could be divided indefinitely. However, the concept of zero, as a number
and a concept, remained a subject of controversy.

Throughout history, mathematicians and philosophers have continued to refine our understanding of the smallest
particles of matter, from the atomic theory of Democritus to the modern understanding of subatomic particles
and quantum mechanics. The journey has been marked by intense debates, groundbreaking discoveries, and a
deepening appreciation for the complexities of the physical world.
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6.2 The foundational problem of moment of inertia

The behaviour of rotating object is of considerable importance. It can be applied to rotating car wheels,
flywheels, the rotation of high divers and many things.

We can imagine a solid rigid body as made up of many particles of massesm1,m2,m3, . . . at distances r1, r2, r3, . . .
from the centre of rotation. See Fig. 1.

Fig. 1. Moment of inertia

The total rotational kinetic energy of the body will be the sum of the energies of all the particles. Then the
total kinetic energy is

KE =
1

2
m1wr

2
1 +

1

2
m2wr

2
2 +

1

2
m3wr

2
3 + . . . .

It should be noted that as the body is rigid the angular velocity w is the same for all particles although the
linear velocity will be greater for particles further from the axis of rotation. We may write

KE =
1

2
w
∑

mr2.

The term ∑
mr2

is called the moment of inertia I of the body about the axis of rotation. It is equal to the infinite sum of the
moments of the inertia of all the particles about the same axis, that is

I = m1r
2
1 +m2r

2
2 +m3r

2
3 + . . . .

Two disturbing questions emerge together out of this subject to reject the evidence of the senses. How are we
to talk about the number of particles in the massive body under consideration? The second question which is
closely related to the first is ‘What is the magnitude of the mass of each particle?’ This is hardly a commendable
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use of the word particle. This word would assume that its mass has a finite quantity however small, the very
opposite to the meaning that it was intended to convey. It will come to mean that the mass is not zero, but a
finite and measurable quantity. If the masses were all finite, the infinite summation

m1r
2
1 +m2r

2
2 +m3r

2
3 + . . .

would have a sum greater than any finite quantity whatever.

By far the most important question on the subject is how can we obtain a finite moment of inertia ? Thus, the
aim of this section is to re-examine the foundation of the moment of inertia of bodies by means of a natural
system that uses zero and the factorial of minus one in a consistent way.

6.3 A rigorous mathematical approach

The moment of inertia is a fundamental concept in physics and engineering, yet its foundation is often overlooked
or misunderstood. We will look into the mathematical intricacies of the moment of inertia, shedding light on
the underlying principles.

Consider a material body of mass M . We can divide this body into n parts, each with a mass of M
n

. The number
n must be a natural number, as we can only count the number of parts using natural numbers. As n increases,
the masses of the resulting parts decrease, but the total mass remains constant:

M

1
= M

M

2
+
M

2
= M

M

3
+
M

3
+
M

3
= M

and so forth. We aforementioned that the ultimate natural number in the sequence

1, 2, 3, . . .

is (−1)!. So if we divide the body in question into (−1)! equal parts, we shall obtain for each part a mass
expressed as

m =
M

(−1)!
= M · 0.

The first idea about the mass M ·0 of each resulting particle of the body which has been divided into (−1)! parts
is that the mass is an entity or existential, having a value equivallent to absolute nothing. This is evidently true
as the 0 in the zero or point mass M · 0 is an existential as already discussed in a previous section.

We must bear in mind that we cannot sum the infinite series

M · 0 +M · 0 +M · 0 + · · ·

by merely considering the partial sums. We must sum all the zeros at once. Since there are (−1)! zeros we have

M · 0 +M · 0 +M · 0 + · · · = M · 0 · (−1)! = M.
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Thus the sum of the masses of the particles, the point and existential particles, gives rise to the original mass
M of the object subjected to infinite division.

6.4 Moments of inertia of a finite rod

We wish to find the moment of inertia of a uniform rod of no thickness. Let us find the moment of inertia about
an axis y passing through one end of the rod and perpendicular to its length as shown in Fig. 2.

The moment of inertia of a point mass m is given by I = mr2, but the rod would have to be considered to be
an infinite number of equal point masses, and each must be multiplied by the square of its distance from the
axis [16]. The rod of length L is divided into (−1)! equal parts. Each part will have a non-vanishing point size
of l given as

l =
L

(−1)!
= L · 0.

y

uniform rodL

l

kl

Fig. 2. Moment of inertia of a uniform rod

The zero size portion is not the void but has actual existence, conserving the initial physical properties in such
a way that summing all these portions furnishes again the whole length, viz

L · 0 + L · 0 + L · 0 + · · · = (−1)! · L · 0 = L.

Now, this non-vanishing zero l is the length between any two consecutive points along the length L. The length
rk between the axis of rotation and the k th point along the length is

rk = kl = kL · 0.

The mass per unit length of the uniform rod is M/L.
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The mass of the element between the k th and k + 1 th points along the length of the rod is the point mass

m =
M

L
l

=
M

L
L · 0

= M · 0.

The point mass m which equals M · 0 is a non-vanishing mass equivalent to the void. Thus, the moment of
inertia is

I =

(−1)!∑
k=1

mr2

=

(−1)!∑
k=1

M · 0(kL · 0)2

=

(−1)!∑
k=1

ML2k2 · 03

= ML2 · 03

(−1)!∑
k=1

k2

.

Replacing

(−1)!∑
k=1

k2

with its actual sum as found in a previous section, we get

I = ML2 · 03

[
(−1)!3

3
+

(−1)!2

2
+

(−1)!

6

]
=
ML2 · 03 · (−1)!3

3
+
ML2 · 03 · (−1)!2

2
+
ML2 · 03 · (−1)!

6

=
ML2

3
+
ML2 · 0

2
+
ML2 · 02

6

≡ ML2

3
.

6.5 Moment of inertia of a circular disc

Finally we wish to determine the moment of inertia of a circular disc about an axis through its centre and
perpendicular to its plane. Let R be the radius on the disc. The complete division of the radius into equal parts
give the point size of

r =
R

(−1)!
= R · 0.

Thus, the distance between any two consecutive points along the radius is the zero or infinitely small R · 0. Let
us now divide the disc into (−1)! concentric circles. The radius rk of the k th concentric circle measured from
the centre of the circle is rk = kr = kR · 0.
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Also, the radius of the k+1 th concentric circle measured from the same centre of the circle is rk+1 = (k+1)r =
(k + 1)R · 0. The area of the element a between the k th and the k + 1 th concentric circles is

a = πr2k+1 − πr2k
= π

(
r2k+1 − r2k

)
= π (rk+1 + rk) (rk+1 − rk)

= π [(k + 1)R · 0 + kR · 0] [(k + 1)R · 0− kR · 0]

= π [(2k + 1)R · 0] [R · 0]

= π(2k + 1)R2 · 02

since further operation impends, we retain the expression for a for further use.

Now the mass per unit area of the disc is M/πR2 where M is the mass of the disc. The mass of the element
between the k th and the k + 1 th concentric circles will be

m =
M

πR2
a

=
M

πR2
π(2k + 1)R2 · 02

= M(2k + 1) · 02.

The moment of inertia is

I =

(−1)!∑
k=1

mr2k

=

(−1)!∑
k=1

M(2k + 1) · 02(kR · 0)2

= MR2 · 04

(−1)!∑
k=1

(2k3 + k2)

= MR2 · 04

[
2

(
1

4
(−1)!4 +

1

2
(−1)!3 +

1

4
(−1)!2

)
+

1

3
(−1)!3 +

1

2
(−1)!2 +

1

6
(−1)!

]
= MR2 · 04

[
1

2
(−1)!4 + (−1)!3 +

1

2
(−1)!2 +

1

3
(−1)!3 +

1

2
(−1)!2 +

1

6
(−1)!

]
= MR2 · 04

[
1

2
(−1)!4 + (−1)!3 +

1

3
(−1)!3 +

1

2
(−1)!2 +

1

2
(−1)!2 +

1

6
(−1)!

]
= MR2 · 04

[
1

2
(−1)!4 +

4

3
(−1)!3 + (−1)!2 +

1

6
(−1)!

]
= MR2

[
1

2
· 04 · (−1)!4 +

4

3
· 04 · (−1)!3 + 04 · (−1)!2 +

1

6
· 04 · (−1)!

]
= MR2

[
1

2
+

4

3
· 0 + 02 +

1

6
· 03

]
≡ MR2

2
.
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R

rk

r

y

x

Fig. 3. Moment of inertia of a circular disc

7 Conclusion

Our investigation has successfully resolved the moment of inertia enigma, revealing the true essence of the
particles resulting from the infinite division of matter object. By embracing the arithmetic of zero and minus
one factorial, we have established a rigorous foundation for this fundamental concept. Our work paves the way
for innovative solutions and applications, empowering researchers to push the boundaries of human knowledge
and achievement.
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