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1. Introduction

m n 1882, Cebysev [1] gave the following inequality

T < 15 (0= [l 18]l (1)

where f, g : [a,b] — R are absolutely continuous function, whose first derivatives f’ and g’are bounded and

T(f,g)=bla7f( x) g (x dx—( /f ) (L?g(x)dx), )

a

and ||.|| . denotes the norm in Lo [4, b] defined as || f||, = esssup |f (¢)].
tela,b
During the past few years, many researchers have giv[en] considerable attention to the inequality (1).
Various generalizations, extensions and variants have been appeared in the literature [2-6].
Recently, Guezane-Lakoud and Aissaoui [2] gave the analogue of the functional (2) for functions of two
variables and established the following Cebysev type inequalities for functions whose mixed derivatives are
bounded as follows;

T < 3800K" 1fslloo 182 1o 3)
and
1 b d
TG < g [ [ L08GD Il + D I8 ) [((= ) + =) (5= + (@~ y)?) || dyax,
4)
where

a

_ b}(;f]?g (x,y) (/.f(x,v)dv) dydx+ ( 7f (x,y dydx) (77g (t,0) dvdt) (5)

fgi77fxy (x,y) dydx — % //gxy<7f )dydx
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Motivated by the existing results, in this paper we establish some new Cebygev type inequalities
for functions whose mixed derivatives are co-ordinates quasi-convex and co-ordinates (x, QC) and
(s, QC)-convex.

2. Preliminaries

Throughout this paper, we denote by A, the bidimensional interval in [0,0)%, A =: [a,b] x [c,d] witha < b
2
andc <d,k=:(b—a)(d—c)and % by faw-

Definition 1. [7] A function f : A — R is said to be convex on the co-ordinates on A if
fAx+ 1 =MNtwy+ (1—w)o) <Adwf(x,y) +A(1—w) f(x,0)+ (1 =A)wf(t,y)+ (1—A)(1—w) f(t,0)
holds for all A, w € [0,1] and (x,v), (x,0), (t,y), (t,v) € A.
Definition 2. [8] A function f : A — R is said to be quasi-convex on the co-ordinates on A if
fAx+ (A =Mt wy+ (1 -w)v) <max{f(xy)+ f(x,0) + f(t,y) + f(£,0)}
holds for all A, w € [0,1] and (x,v), (x,v), (t, ), (t,v) € A.

Definition 3. [9] For some & € (0,1], a function f : A — R is said to be («, QC)-convex on the co-ordinates on
A, if

fAx+ (1 =A)t,wy+ (1 —w)v) <A"max {f(x,y) + f(x,0)} + (1 =A%) max {f(t,y) + f(t,0)}
holds for all A, w € [0,1] and (x,v), (x,v), (t, ), (t,v) € A.

Definition 4. [10] For some s € [—1,1], a function f : A — [0, 00) is said to be (s, QC)-convex on co-ordinates
on A, if

fAx+ (1= A) twy+ (1 —w)o) A max{f(x,y) + f(x,0)} + (1 - A) max {f(t,y) + f(t,0)}
holds forall A € (0,1), w € [0,1] and (x,y), (x,v), (t,y), (t,v) € A.

Lemma 1. [11] Letf: A — R be a partial differentiable mapping on A in R2. If f,, € Ly (A ) then for any (x,y) € A,
we have the equality;

flxy) =bljf(t,y>dt + dljf(x,v)dv - i}?f(hv)dvdt + i77 (x—1) (y—0)

a Cc

11
X (//fm Ax+(1-MNt,wy — (1—w)v) dwdA) dodt. (6)
00

3. Main result

Theorem 1. Let f,g: A — R be partially differentiable functions such that their second derivatives f),, and gy, are
integrable on A. If | fyy | and |grw| are co-ordinated quasi-convex on A, then

IT(f,8)] < 309 MNK, @)
where T(f,g) is defined as in (5), M = max_|fiwo (,9)| + fw (3,0) | + |frw (b )| + | frwo (1,0)]], and
x,te€(a,b)y,ve(cd)
N= max_lgi0 (6] + g0 (4,2)] + |8aw (6 3)] + 820 (1 0)]], and k = (b~ a) (d — ).

x,te(a,b)y,ve(c,d)
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Proof. From Lemma 1, we have

X,Y) — blujf(t,y)dt — 11107]‘(95,0)010 + i??f(t,v)dvdt
—,1(77 x—t)(y—0) (//wa Ax+ (1 —AMtwy — (1 —w)o )dzwl)t) dodt, 8)

and

/gtydt——/ngvar //gtvdvdt
_k// (x—t)(y—vo (z{g/\w (Ax+(1— )t,wy—(l—w)v)dwd)t) dodt. 9)

Multiplying (8) by (9), and then integrating the resulting equality with respect to x and y over A, using modulus
and Fubini’s Theorem, and multiplying the result by %, we get

bd [bd 11
T(f,9)| gk%// {//|x—t| ly —v] x (//mw(Ax—l—(l—/\)t,wy—(1—w)v)|dwd/\) dvdt]
11
X lx —t| |y —v| x S |Ax + (1 =Nt wy — (1 —w)v)|dwdA | | dodt | dydx. (10)
[t ([ I

Since | fy,| and |g«| are co-ordinated quasi-convex, we deduce

b d

2
IT(f, g>\<k3MN/ / ( / / r— |y—v|dvdt) dydx = X5k MN, (1

where we have used the fact that

bd [bd 2
// (//|x—ty—v|dvdt> dydx = 3380"5 (12)

a c a c

The proof is completed. O

Theorem 2. Under the assumptions of Theorem 1, we have

T(f.9) %[// (Mg(e,y) |+ NIfGey)ll [(r—a)P+ o =x7] x [v=c+(@d -y dydz,  (13)

where T(f, ) is defined as in (5), M, N, and k are as in Theorem 1.

Proof. From Lemma 1, (8) and (9) are valid. Let G(x,y) = 5g(x,y) and F(x,y) = = f(x,y). Multiplying
G(x,y) by F(x,y), then integrating the resultant equalities with respect to x and y over A, and by using the
modulus, we get
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1g(x,y)|

b d
[ [ =ty
a ¢

b d b d
fro A+ (1 )t,wy—(l—w)v)|dwd/\) dvdt] dydx+ [ [ 7Gx y)] [//|x—t| ly—o|

IT(f,8)| <3 [
|

Since | f,| and |g), | are co-ordinated quasi-convex, (14) implies

b d b d
HU@>s¢[//Mguﬂn(//u—ty—m@w>@M
v v
+//N|f(x,y)\ (//xt| |yvdvdt)] dydx
) a o »
—ﬁ/]kawwn+Nvmym(//u—ty—vwadWx (15)

By a simple computation, we easily obtain

oY~ o —u S Y—
O\H O\H n\m_‘

181, Ax+ (1 =A)t,wy — (1 —w)v) dwd)\) dvdt] dydx. (14)

‘//v—wuy—ﬂdwi —x-a?+ -0 [g-? + @-?]. (16)

Substituting (16) in (15), we get the desired result. [

Theorem 3. Let f,g: A — R be partially differentiable functions, such that their second derivatives f,, and g, are
integrable on A. If | faw| and |gaw | are co-ordinated w-quasi-convex on A, for some « € (0,1], then

IT(f:9)] < sgmMNK, (17)
where T(f, ) is defined as in (5), M, N, and k are as in Theorem 1.

Proof. Clearly the inequalities (8)-(10) are valid, using the co-ordinated a-quasi-convexity of | f).,| and |grw/,
(10) gives

bd[bd 11
%//[//M—ﬂW—w//ﬁwmwﬂﬂﬁmerhﬁme
c ac 00

+ (1 =A%) max{[f,, (ty)] + |f,, (£ 0)[}] dwdA) dvdt]

[//w—ty—w//' “max {13, (x,y)| + [y, (3, 0)]}

- (1— A% max {[g,, (£y)| + Ig,, (t,0)]}] dwdA] dodt] dydx

é?;[/jw—ﬂw—ﬂ{mwﬂﬁ&mw%HﬁAmmHJ}MmMA
¢ 00
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11
+ max{|f, (ty)| +|f,, (t©) |}// (1—-A%) dwd)\] dvdt]
00

[77|x—f| ly =l [max{gm(x Y18y, (2,0 |}///\“dwd/\

11
+ max {|g,, (t,y)| +18,,(t) |}// (1-A%) dwd/\] dvdt] dydx
00

b d b d
gk%// ”(//|x—t||y—v| <ai1—|—1—lxil)Mdvdt>]
X [(77|x—t||y—v| (,Xil—i-l—ll)Ndvdt)”dydx
b; de 2
:%// (//x—t| |y—v) dydx. (18)

Using (12) in (18), we obtain the desired result. [

Theorem 4. Under the assumptions of Theorem 3, we have

b d
IT(f,8)| <5 { [ [ (MigCew) |+ NIfGy)l) x [ —a)+ 0 -x7] [y =) + @y dydx,  (19)

where T(f,g) is defined as in (5) and M, N, and k are as in Theorem 3.

Proof. By the same argument given in Theorem 2, we easly obtain the inequality (14), using the
a-quasi-convexity on the co-ordinates of |f),| and [g)w |, we get

IT(f,9)] gzlﬁ {77 lg(x,y)] [77|x—t| ly — o] x (M}]/\“dwd)\—i-M]] (1-1%) dwd)\) dvdt] dydx
ac 00 00
b d 11 11
+//|fxy [//x—tHy—v (N///\“dwd/\—i—Nz{l—A”‘ dwdA)dvdt]dydx

c
d

b
—%//[M@xy |+ N[f(x, )] //]x7t||yfv]dvdt

Substituting (16) in (20), we get the desired result. [

dydx. (20)

Theorem 5. Let f,g: A — R be partially differentiable functions such that their second derivatives f),, and gy, are
integrable on A, and let s € (—1,1] fixed. If | fu,| and |gaq| are co-ordinated s-quasi-convex on A, then

2
T, < Saqis e MNK, 1)
where T(f, ) is defined as in (5) and M, N, and k are as in Theorem 1.

Proof. Clearly inequalities (8)-(10) are satisfied. Using second definition of the co-ordinated s-quasi-convex of
fro| and g1, (10) gives;
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T(£,9)] 3;77 W x—tly—o 77 A max {1f,, (o )| + 1, (5,01}
ac [ac 00

+ (1 =A)max {|f,, (ty)| + £, (£,0)[}] dwd)) dvdt]

x [7 J =ity = | | 0 ol ol + 5 (o)
ac 00

+ (1= A max {|g,,, (t,9)| + [, (+,0)1}] dwdA] dodt] dydx
b d b d 11
-5// {//|x—t| ly—ol [max{wa(x,y)+|wa<x,v>}//AdedA
a c a c 00

11
+ max {If,, ()| + £, o)) [ [ @ —A)dem] dvdt}
00

x [77 x =ty o] [max {18159 + 18,0 (5,01} NWW
a’c 00
+ max{|g,, (t,y)| +g,,(t?) }77 dwd/\] dvdt] dydx
L b b d v
k—g// H(// |x — t] |y — v| (% Ml)dvdt)]
[(?7 [x —t| |y — v (% ll) dvdt)]] dydx
= // (//|x—t |y—v|) dydx. (22)

Substituting (12) in (22), we get the desired result. [

Theorem 6. Under the assumptions of Theorem 5, we have

bd
IT(f,9)| < g [ [ [ MIgCey) |+ N IfGy)l) x [(x=a)+ 0 =] [y =) + (@ -] dydz, @3)

where T(f,g) is defined as in (5) and M, N, and k are as in Theorem 1.

Proof. By the same argument given in Theorem 2, we easily obtain the inequality (14), using the second
definition of s-quasi-convexity on the co-ordinates of |f),| and [g), |, we get

b d b d 11 11
IT(f,9)] < —2k2 [//|g(x,y)| [//|x—t| ly — | x (M//Asdwd)t—i-M// (1-2 dwd/\) dvdt] dydx
00 00

a c
b d

11 11
+/ F(x,y) [//|x—ty—v| (N{{Asdwd/\JrN{{l— dwd/\)dvdt]dydx
b

b d d
k2//[ngy)+N|fxy //xt||yvdvdt]dydx. (24)
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Substituting (16) in (24), we get the desired result. O

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

(1]

(2]

3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

(11]

Cebysev, P. L. (1882). Sur les expressions approximatives des integrales definies par les autres prises entre les mémes
limites. In Proc. Math. Soc. Charkov, 2, 93-98.

Guezane-Lakoud, A., & Aissaoui, F. (2011). New Cebygev type inequalities for double integrals. Journal of
Mathematical Inequalities, 5(4), 453-462.

Meftah, B., & Boukerrioua, K. (2015). New Cebyéev type inequalities for functions whose second derivatives are
(s1,m7) — (s2,my) convex on the co-ordinates. Theory and Applications of Mathematics & Computer Science, 5(2), 116-125.
Meftah, B., & Boukerrioua, K. (2015). éebyéev inequalities whose second derivatives are (s,7)—convex on the
co-ordinates. Journal of Advanced Research in Applied Mathematics, 7(3), 76-87.

Meftah, B., & Boukerrioua, K. (2015). On some Cebyéev yupe inequalities for functions whose second derivative are
(hq; hp)-convex on the co-ordinates. Konuralp Journal of Mathematics, 3(2), 77-88.

Sarikaya, M. Z., Budak, H., & Yaldiz, H. (2014). Cebysev type inequalities for co-ordinated convex functions. Pure
and Applied Mathematics Letters, 2, 44-48.

Dragomir, S. S. (2001). On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from
the plane. Taiwanese Journal of Mathematics, 5(4), 775-788.

Latif, M. A., Hussain, S., & Dragomir, S. S. (2012). Refinements of Hermite-Hadamard type inequalities for
co-ordinated quasi—convex functions. International Journal of Mathematical Archive, 3(1), 161-171.

Xi, B. Y., Sun, J., & Bai, S. P. (2015). On some Hermite-Hadamard type integral inequalities for co-ordinated (a, QC)
and (a, CJ)—convex functions. Tbhilisi Mathematical Journal, 8(2), 75-86.

Wu, Y, & Qi, F. (2016). On some Hermite-Hadamard type inequalities for (s, QC)—-convex functions. SpringerPlus,
5(1), 1-13.

Sarikaya, M. Z. (2014). On the Hermite-Hadamard type inequalities for co-ordinated convex function via fractional
integrals. Integral Transforms and Special Functions, 25(2), 134-147.

(© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
BY

(http:/ /creativecommons.org/licenses /by /4.0/).


http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Main result

