

Article

Čebyšev inequalities for co-ordinated QC-convex and (s, QC)-convex

B. Meftah^{1,*} and A. Souahi²

- Laboratoire des Télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria.
- Laboratory of Advanced Materials, University of Badji Mokhtar-Annaba, P.O. Box 12, 23000 Annaba, Algeria.
- * Correspondence: badrimeftah@yahoo.fr

Received: 19 July 2020; Accepted: 1 January 2021; Published: 23 January 2021.

Abstract: In this paper, we establish some new Čebyšev type inequalities for functions whose modulus of the mixed derivatives are co-ordinated quasi-convex and α -quasi-convex and s-quasi-convex functions.

Keywords: Čebyšev inequalities, quasi-convexity, (s, QC)-convexity, (α, QC) -convexity.

1. Introduction

T

n 1882, Čebyšev [1] gave the following inequality

$$|T(f,g)| \le \frac{1}{12} (b-a)^2 ||f'||_{\infty} ||g'||_{\infty},$$
 (1)

where $f,g:[a,b]\to\mathbb{R}$ are absolutely continuous function, whose first derivatives f' and g' are bounded and

$$T(f,g) = \frac{1}{b-a} \int_{a}^{b} f(x) g(x) dx - \left(\frac{1}{b-a} \int_{a}^{b} f(x) dx\right) \left(\frac{1}{b-a} \int_{a}^{b} g(x) dx\right), \tag{2}$$

and $\|.\|_{\infty}$ denotes the norm in $L_{\infty}[a,b]$ defined as $\|f\|_{\infty} = ess \sup_{t \in [a,b]} |f(t)|$.

During the past few years, many researchers have given considerable attention to the inequality (1). Various generalizations, extensions and variants have been appeared in the literature [2–6].

Recently, Guezane-Lakoud and Aissaoui [2] gave the analogue of the functional (2) for functions of two variables and established the following Čebyšev type inequalities for functions whose mixed derivatives are bounded as follows;

$$|T(f,g)| \le \frac{49}{3600} k^2 \|f_{\lambda\alpha}\|_{\infty} \|g_{\lambda\alpha}\|_{\infty},$$
 (3)

and

$$|T(f,g)| \leq \frac{1}{8k^2} \int_{a}^{b} \int_{c}^{d} \left[\left(|g(x,y)| \|f_{\lambda\alpha}\|_{\infty} + |f(x,y)| \|g_{\lambda\alpha}\|_{\infty} \right) \left[\left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) \right] \right] dy dx, \tag{4}$$

where

$$T(f,g) = \frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(x,y) g(x,y) dy dx - \frac{d-c}{k^{2}} \int_{a}^{b} \int_{c}^{d} g(x,y) \left(\int_{a}^{b} f(t,y) dt \right) dy dx - \frac{b-a}{k^{2}} \int_{a}^{b} \int_{c}^{d} g(x,y) \left(\int_{c}^{d} f(x,v) dv \right) dy dx + \frac{1}{k^{2}} \left(\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx \right) \left(\int_{a}^{b} \int_{c}^{d} g(t,v) dv dt \right).$$
 (5)

Motivated by the existing results, in this paper we establish some new Čebyšev type inequalities for functions whose mixed derivatives are co-ordinates quasi-convex and co-ordinates (α , QC) and (s, QC)-convex.

2. Preliminaries

Throughout this paper, we denote by Δ , the bidimensional interval in $[0, \infty)^2$, $\Delta =: [a, b] \times [c, d]$ with a < b and c < d, k =: (b - a) (d - c) and $\frac{\partial^2 f}{\partial \lambda \partial w}$ by $f_{\lambda w}$.

Definition 1. [7] A function $f : \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if

$$f(\lambda x + (1 - \lambda)t, wy + (1 - w)v) \le \lambda w f(x, y) + \lambda (1 - w) f(x, v) + (1 - \lambda) w f(t, y) + (1 - \lambda) (1 - w) f(t, v)$$

holds for all λ , $w \in [0,1]$ and (x,y), (x,v), (t,y), $(t,v) \in \Delta$.

Definition 2. [8] A function $f: \Delta \to \mathbb{R}$ is said to be quasi-convex on the co-ordinates on Δ if

$$f(\lambda x + (1 - \lambda)t, wy + (1 - w)v) \le \max\{f(x, y) + f(x, v) + f(t, y) + f(t, v)\}$$

holds for all $\lambda, w \in [0,1]$ and $(x,y), (x,v), (t,y), (t,v) \in \Delta$.

Definition 3. [9] For some $\alpha \in (0,1]$, a function $f : \Delta \to \mathbb{R}$ is said to be (α, QC) -convex on the co-ordinates on Δ , if

$$f(\lambda x + (1 - \lambda)t, wy + (1 - w)v) \le \lambda^{\alpha} \max\{f(x, y) + f(x, v)\} + (1 - \lambda^{\alpha}) \max\{f(t, y) + f(t, v)\}$$

holds for all λ , $w \in [0,1]$ and (x,y), (x,v), (t,y), $(t,v) \in \Delta$.

Definition 4. [10] For some $s \in [-1,1]$, a function $f : \Delta \to [0,\infty)$ is said to be (s,QC)-convex on co-ordinates on Δ , if

$$f(\lambda x + (1 - \lambda)t, wy + (1 - w)v) \le \lambda^s \max\{f(x, y) + f(x, v)\} + (1 - \lambda)^s \max\{f(t, y) + f(t, v)\}$$

holds for all $\lambda \in (0,1)$, $w \in [0,1]$ and $(x,y),(x,v),(t,y),(t,v) \in \Delta$.

Lemma 1. [11] Let $f: \Delta \to \mathbb{R}$ be a partial differentiable mapping on Δ in \mathbb{R}^2 . If $f_{\lambda w} \in L_1(\Delta)$ then for any $(x,y) \in \Delta$, we have the equality;

$$f(x,y) = \frac{1}{b-a} \int_{a}^{b} f(t,y)dt + \frac{1}{d-c} \int_{c}^{d} f(x,v)dv - \frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(t,v)dvdt + \frac{1}{k} \int_{a}^{b} \int_{c}^{d} (x-t)(y-v)$$

$$\times \left(\int_{0}^{1} \int_{0}^{1} f_{\lambda w} \left(\lambda x + (1-\lambda)t, wy - (1-w)v \right) dwd\lambda \right) dvdt.$$
(6)

3. Main result

Theorem 1. Let $f,g:\Delta\to\mathbb{R}$ be partially differentiable functions such that their second derivatives $f_{\lambda w}$ and $g_{\lambda w}$ are integrable on Δ . If $|f_{\lambda w}|$ and $|g_{\lambda w}|$ are co-ordinated quasi-convex on Δ , then

$$|T(f,g)| \le \frac{49}{3600} MNk^2,\tag{7}$$

where T(f,g) is defined as in (5), $M = \max_{\substack{x,t \in [a,b],y,v \in [c,d] \\ x,t \in [a,b],y,v \in [c,d]}} \left[|f_{\lambda w}\left(x,y\right)| + |f_{\lambda w}\left(x,v\right)| + |f_{\lambda w}\left(t,y\right)| + |f_{\lambda w}\left(t,v\right)| \right]$, and $N = \max_{\substack{x,t \in [a,b],y,v \in [c,d] \\ x,t \in [a,b],y,v \in [c,d]}} \left[|g_{\lambda w}\left(x,y\right)| + |g_{\lambda w}\left(x,v\right)| + |g_{\lambda w}\left(t,y\right)| + |g_{\lambda w}\left(t,v\right)| \right]$, and k = (b-a)(d-c).

Proof. From Lemma 1, we have

$$f(x,y) - \frac{1}{b-a} \int_{a}^{b} f(t,y) dt - \frac{1}{d-c} \int_{c}^{d} f(x,v) dv + \frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(t,v) dv dt$$

$$= \frac{1}{k} \int_{a}^{b} \int_{c}^{d} (x-t) (y-v) \left(\int_{0}^{1} \int_{0}^{1} f_{\lambda w} (\lambda x + (1-\lambda)t, wy - (1-w)v) d\alpha d\lambda \right) dv dt,$$
 (8)

and

$$g(x,y) - \frac{1}{b-a} \int_{a}^{b} g(t,y)dt - \frac{1}{d-c} \int_{c}^{d} g(x,v)dv + \frac{1}{k} \int_{a}^{b} \int_{c}^{d} g(t,v)dvdt$$

$$= \frac{1}{k} \int_{a}^{b} \int_{c}^{d} (x-t) (y-v) \left(\int_{0}^{1} \int_{0}^{1} g_{\lambda w} (\lambda x + (1-\lambda)t, wy - (1-w)v) dwd\lambda \right) dvdt. \tag{9}$$

Multiplying (8) by (9), and then integrating the resulting equality with respect to x and y over Δ , using modulus and Fubini's Theorem, and multiplying the result by $\frac{1}{k}$, we get

$$\begin{split} |T(f,g)| &\leq \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \, \times \left(\int\limits_0^1 \int\limits_0^1 |f_{\lambda w} \left(\lambda x + (1-\lambda)t, wy - (1-w)v\right)| \, dw d\lambda \right) dv dt \right] \\ &\times \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \, \times \left(\int\limits_0^1 \int\limits_0^1 g_{\lambda w} \, |(\lambda x + (1-\lambda)t, wy - (1-w)v)| \, dw d\lambda \right) \right] dv dt \right] dy dx. \quad (10) \end{split}$$

Since $|f_{\lambda\alpha}|$ and $|g_{\lambda\alpha}|$ are co-ordinated quasi-convex, we deduce

$$|T(f,g)| \le \frac{1}{k^3} MN \int_a^b \int_c^d \left(\int_a^b \int_c^d |x-t| |y-v| \, dv dt \right)^2 dy dx = \frac{49}{3600} k^2 MN, \tag{11}$$

where we have used the fact that

$$\int_{a}^{b} \int_{c}^{d} \left(\int_{a}^{b} \int_{c}^{d} |x - t| |y - v| \, dv dt \right)^{2} dy dx = \frac{49}{3600} k^{5}.$$
 (12)

The proof is completed. \Box

Theorem 2. *Under the assumptions of Theorem 1, we have*

$$|T(f,g)| \le \frac{1}{8k^2} \left[\int_a^b \int_c^d \left[M \left| g(x,y) \right| + N \left| f(x,y) \right| \right] \left[(x-a)^2 + (b-x)^2 \right] \times \left[(y-c)^2 + (d-y)^2 \right] \right] dy dx, \quad (13)$$

where T(f,g) is defined as in (5), M, N, and k are as in Theorem 1.

Proof. From Lemma 1, (8) and (9) are valid. Let $G(x,y) = \frac{1}{2k}g(x,y)$ and $F(x,y) = \frac{1}{2k}f(x,y)$. Multiplying G(x,y) by F(x,y), then integrating the resultant equalities with respect to x and y over Δ , and by using the modulus, we get

$$|T(f,g)| \leq \frac{1}{2k^{2}} \left[\int_{a}^{b} \int_{c}^{d} |g(x,y)| \left[\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \right] \right]$$

$$\times \left(\int_{0}^{1} \int_{0}^{1} |f_{\lambda w} \left(\lambda x + (1-\lambda)t, wy - (1-w)v \right) | dw d\lambda \right) dv dt \right] dy dx + \int_{a}^{b} \int_{c}^{d} |f(x,y)| \left[\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \right]$$

$$\times \left(\int_{0}^{1} \int_{0}^{1} |g_{\lambda w} \left(\lambda x + (1-\lambda)t, wy - (1-w)v \right) | dw d\lambda \right) dv dt \right] dy dx.$$

$$(14)$$

Since $|f_{\lambda w}|$ and $|g_{\lambda w}|$ are co-ordinated quasi-convex, (14) implies

$$|T(f,g)| \leq \frac{1}{2k^{2}} \left[\int_{a}^{b} \int_{c}^{d} M |g(x,y)| \left(\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \, dv dt \right) dy dx \right.$$

$$+ \int_{a}^{b} \int_{c}^{d} N |f(x,y)| \left(\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \, dv dt \right) \right] dy dx$$

$$= \frac{1}{2k^{2}} \int_{a}^{b} \int_{c}^{d} (M |g(x,y)| + N |f(x,y)|) \left(\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \, dv dt \right) dy dx. \tag{15}$$

By a simple computation, we easily obtain

$$\int_{a}^{b} \int_{c}^{d} |x - t| |y - v| \, dv dt = \frac{1}{4} \left[(x - a)^2 + (b - x)^2 \right] \left[(y - c)^2 + (d - y)^2 \right]. \tag{16}$$

Substituting (16) in (15), we get the desired result. \Box

Theorem 3. Let $f,g:\Delta\to\mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda w}$ and $g_{\lambda w}$ are integrable on Δ . If $|f_{\lambda w}|$ and $|g_{\lambda w}|$ are co-ordinated α -quasi-convex on Δ , for some $\alpha\in(0,1]$, then

$$|T(f,g)| \le \frac{49}{3600} MNk^2,\tag{17}$$

where T(f,g) is defined as in (5), M, N, and k are as in Theorem 1.

Proof. Clearly the inequalities (8)-(10) are valid, using the co-ordinated α -quasi-convexity of $|f_{\lambda w}|$ and $|g_{\lambda w}|$, (10) gives

$$\begin{split} |T(f,g)| \leq & \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \int\limits_0^1 \int\limits_0^1 \left[\lambda^\alpha \max \left\{ |f_{\lambda w}(x,y)| + |f_{\lambda w}(x,v)| \right\} \right. \\ & + \left. (1-\lambda^\alpha) \max \left\{ |f_{\lambda w}(t,y)| + |f_{\lambda w}(t,v)| \right\} \right] dw d\lambda) \, dv dt \big] \\ & \times \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \int\limits_0^1 \int\limits_0^1 \left[\lambda^\alpha \max \left\{ |g_{\lambda w}(x,y)| + |g_{\lambda w}(x,v)| \right\} \right. \\ & + \left. (1-\lambda^\alpha) \max \left\{ |g_{\lambda w}(t,y)| + |g_{\lambda w}(t,v)| \right\} \right] dw d\lambda \big] \, dv dt \big] \, dy dx \\ & = \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \left[\max \left\{ |f_{\lambda w}(x,y)| + |f_{\lambda w}(x,v)| \right\} \int\limits_0^1 \int\limits_0^1 \lambda^\alpha dw d\lambda \right] \right] dy dx \\ & = \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \left[\max \left\{ |f_{\lambda w}(x,y)| + |f_{\lambda w}(x,v)| \right\} \int\limits_0^1 \int\limits_0^1 \lambda^\alpha dw d\lambda \right] dy dt \bigg] dy dx \\ & = \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \left[\max \left\{ |f_{\lambda w}(x,y)| + |f_{\lambda w}(x,v)| \right\} \int\limits_0^1 \int\limits_0^1 \lambda^\alpha dw d\lambda \right] dy dt \bigg] dy dx \\ & = \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_c^d |x-t| \, |y-v| \left[\int\limits_a^b |x-t| \, |y-v| \right] \left[\int\limits_a^b |x-t| \, |y-v| \left[\int\limits_a^b |x-t| \, |y-v| \, |x-v| \, |x-v| \, |x-v| \right] \bigg] dw dx \bigg] dy dt \bigg] dy dx \\ & = \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_a^d |x-t| \, |y-v| \, |x-v| \bigg] \bigg] dy dx \\ & = \frac{1}{k^3} \int\limits_a^b \int\limits_c^d \left[\int\limits_a^b \int\limits_a^d |x-v| \, |y-v| \, |x-v| \, |$$

Using (12) in (18), we obtain the desired result. \Box

Theorem 4. *Under the assumptions of Theorem 3, we have*

$$|T(f,g)| \le \frac{1}{8k^2} \left[\int_a^b \int_c^d (M|g(x,y)| + N|f(x,y)|) \times \left[(x-a)^2 + (b-x)^2 \right] \left[(y-c)^2 + (d-y)^2 \right] dy dx, \quad (19)$$

where T(f,g) is defined as in (5) and M, N, and k are as in Theorem 3.

Proof. By the same argument given in Theorem 2, we easly obtain the inequality (14), using the α -quasi-convexity on the co-ordinates of $|f_{\lambda w}|$ and $|g_{\lambda w}|$, we get

$$|T(f,g)| \leq \frac{1}{2k^{2}} \left[\int_{a}^{b} \int_{c}^{d} |g(x,y)| \left[\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \times \left(M \int_{0}^{1} \int_{0}^{1} \lambda^{\alpha} dw d\lambda + M \int_{0}^{1} \int_{0}^{1} (1-\lambda^{\alpha}) dw d\lambda \right) dv dt \right] dy dx$$

$$+ \int_{a}^{b} \int_{c}^{d} |f(x,y)| \left[\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \times \left(N \int_{0}^{1} \int_{0}^{1} \lambda^{\alpha} dw d\lambda + N \int_{0}^{1} \int_{0}^{1} (1-\lambda^{\alpha}) dw d\lambda \right) dv dt \right] dy dx.$$

$$= \frac{1}{2k^{2}} \int_{a}^{b} \int_{c}^{d} \left[(M |g(x,y)| + N |f(x,y)|) \int_{a}^{b} \int_{c}^{d} |x-t| |y-v| dv dt \right] dy dx. \tag{20}$$

Substituting (16) in (20), we get the desired result. \Box

Theorem 5. Let $f,g:\Delta\to\mathbb{R}$ be partially differentiable functions such that their second derivatives $f_{\lambda w}$ and $g_{\lambda w}$ are integrable on Δ , and let $s\in (-1,1]$ fixed. If $|f_{\lambda\alpha}|$ and $|g_{\lambda\alpha}|$ are co-ordinated s-quasi-convex on Δ , then

$$|T(f,g)| \le \frac{49}{900(s+1)^2} MNk^2,$$
 (21)

where T(f,g) is defined as in (5) and M, N, and k are as in Theorem 1.

Proof. Clearly inequalities (8)-(10) are satisfied. Using second definition of the co-ordinated *s*-quasi-convex of $|f_{\lambda w}|$ and $|g_{\lambda w}|$, (10) gives;

$$\begin{split} |T(f,g)| &\leq \frac{1}{k^3} \int\limits_{a}^{b} \int\limits_{c}^{d} \left[\int\limits_{a}^{b} \int\limits_{c}^{d} |x-t| |y-v| \int\limits_{0}^{1} \int\limits_{0}^{1} [\lambda^s \max \left\{ |f_{\lambda w}(x,y)| + |f_{\lambda w}(x,v)| \right\} \right. \\ &+ \left. (1-\lambda)^s \max \left\{ |f_{\lambda w}(t,y)| + |f_{\lambda w}(t,v)| \right\} \right] dw d\lambda \right) dv dt \Big] \\ &\times \left[\int\limits_{a}^{b} \int\limits_{c}^{d} |x-t| |y-v| \int\limits_{0}^{1} \int\limits_{0}^{1} [\lambda^s \max \left\{ |g_{\lambda w}(x,y)| + |g_{\lambda w}(x,v)| \right\} \right. \\ &+ \left. (1-\lambda)^s \max \left\{ |g_{\lambda w}(t,y)| + |g_{\lambda w}(t,v)| \right\} \right] dw d\lambda \Big] dv dt \Big] dy dx \\ &= \frac{1}{k^3} \int\limits_{a}^{b} \int\limits_{c}^{d} \int\limits_{c}^{b} \int\limits_{c}^{d} |x-t| |y-v| \left[\max \left\{ |f_{\lambda w}(x,y)| + |f_{\lambda w}(x,v)| \right\} \right] \int\limits_{0}^{1} \int\limits_{0}^{1} \lambda^s dw d\lambda \\ &+ \max \left\{ |f_{\lambda w}(t,y)| + |f_{\lambda w}(t,v)| \right\} \int\limits_{0}^{1} \int\limits_{0}^{1} (1-\lambda)^s dw d\lambda \right] dv dt \Big] \\ &\times \left[\int\limits_{a}^{b} \int\limits_{c}^{d} |x-t| |y-v| \left[\max \left\{ |g_{\lambda w}(x,y)| + |g_{\lambda w}(x,v)| \right\} \right] \int\limits_{0}^{1} \int\limits_{0}^{1} \lambda^s dw d\lambda \right. \\ &+ \max \left\{ |g_{\lambda w}(t,y)| + |g_{\lambda w}(t,v)| \right\} \int\limits_{0}^{1} \int\limits_{0}^{1} (1-\lambda)^s dw d\lambda \right] dv dt \Big] dy dx \\ &\leq \frac{1}{k^3} \int\limits_{a}^{b} \int\limits_{c}^{d} \left[\left[\left(\int\limits_{a}^{b} \int\limits_{c}^{d} |x-t| |y-v| \left(\frac{M}{s+1} + \frac{M}{s+1} \right) dv dt \right) \right] \right] dy dx \\ &= \frac{4MN}{(s+1)^2 k^3} \int\limits_{0}^{b} \int\limits_{0}^{d} \left(\int\limits_{0}^{b} \int\limits_{0}^{d} |x-t| |y-v| \left(\frac{N}{s+1} + \frac{N}{s+1} \right) dv dt \right) \Big] dy dx. \end{split}$$

Substituting (12) in (22), we get the desired result. \Box

Theorem 6. *Under the assumptions of Theorem 5, we have*

$$|T(f,g)| \le \frac{1}{4(s+1)k^2} \left[\int_a^b \int_c^d \left(M |g(x,y)| + N |f(x,y)| \right) \times \left[(x-a)^2 + (b-x)^2 \right] \left[(y-c)^2 + (d-y)^2 \right] dy dx, \quad (23)$$

where T(f,g) is defined as in (5) and M, N, and k are as in Theorem 1.

Proof. By the same argument given in Theorem 2, we easily obtain the inequality (14), using the second definition of s-quasi-convexity on the co-ordinates of $|f_{\lambda w}|$ and $|g_{\lambda w}|$, we get

$$|T(f,g)| \leq \frac{1}{2k^{2}} \left[\int_{a}^{b} \int_{c}^{d} |g(x,y)| \left[\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \times \left(M \int_{0}^{1} \int_{0}^{1} \lambda^{s} dw d\lambda + M \int_{0}^{1} \int_{0}^{1} (1-\lambda)^{s} dw d\lambda \right) dv dt \right] dy dx$$

$$+ \int_{a}^{b} \int_{c}^{d} |f(x,y)| \left[\int_{a}^{b} \int_{c}^{d} |x-t| |y-v| \times \left(N \int_{0}^{1} \int_{0}^{1} \lambda^{s} dw d\lambda + N \int_{0}^{1} \int_{0}^{1} (1-\lambda)^{s} dw d\lambda \right) dv dt \right] dy dx.$$

$$= \frac{1}{(s+1)k^{2}} \int_{a}^{b} \int_{c}^{d} \left[(M |g(x,y)| + N |f(x,y)|) \int_{a}^{b} \int_{c}^{d} |x-t| |y-v| dv dt \right] dy dx. \tag{24}$$

Substituting (16) in (24), we get the desired result. \Box

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

- [1] Čebyšev, P. L. (1882). Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. *In Proc. Math. Soc. Charkov*, 2, 93-98.
- [2] Guezane-Lakoud, A., & Aissaoui, F. (2011). New Čebyšev type inequalities for double integrals. *Journal of Mathematical Inequalities*, 5(4), 453-462.
- [3] Meftah, B., & Boukerrioua, K. (2015). New Čebyšev type inequalities for functions whose second derivatives are $(s_1, m_1) (s_2, m_2)$ convex on the co-ordinates. *Theory and Applications of Mathematics & Computer Science*, 5(2), 116-125.
- [4] Meftah, B., & Boukerrioua, K. (2015). Čebyšev inequalities whose second derivatives are (s, r)—convex on the co-ordinates. *Journal of Advanced Research in Applied Mathematics*, 7(3), 76-87.
- [5] Meftah, B., & Boukerrioua, K. (2015). On some Čebyšev yupe inequalities for functions whose second derivative are $(h_1; h_2)$ -convex on the co-ordinates. *Konuralp Journal of Mathematics*, 3(2), 77-88.
- [6] Sarikaya, M. Z., Budak, H., & Yaldiz, H. (2014). Čebyšev type inequalities for co-ordinated convex functions. *Pure and Applied Mathematics Letters*, *2*, 44-48.
- [7] Dragomir, S. S. (2001). On the Hadamard's inequiality for convex functions on the co-ordinates in a rectangle from the plane. *Taiwanese Journal of Mathematics*, 5(4), 775-788.
- [8] Latif, M. A., Hussain, S., & Dragomir, S. S. (2012). Refinements of Hermite–Hadamard type inequalities for co-ordinated quasi–convex functions. *International Journal of Mathematical Archive*, 3(1), 161-171.
- [9] Xi, B. Y., Sun, J., & Bai, S. P. (2015). On some Hermite-Hadamard type integral inequalities for co-ordinated (*a*, *QC*) and (*a*, *CJ*)—convex functions. *Tbilisi Mathematical Journal*, *8*(2), 75-86.
- [10] Wu, Y., & Qi, F. (2016). On some Hermite–Hadamard type inequalities for (s, QC)–convex functions. *SpringerPlus*, 5(1), 1-13.
- [11] Sarikaya, M. Z. (2014). On the Hermite–Hadamard type inequalities for co-ordinated convex function via fractional integrals. *Integral Transforms and Special Functions*, 25(2), 134-147.

© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).