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Abstract
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Itô stochastic differential equation are obtained under some regularity conditions when the
corresponding diffusion is observed at discretely spaced dense time points satisfying a moderately
increasing experimental design condition, the case of high frequency data. Main results are
illustrated by the mean reversion process with drift and the nonhomogeneous Ornstein-Uhlenbeck
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1 Introduction

Time dependent diffusion models are useful for modeling term structure dynamics in finance, see
[1]. Parameter estimation for continuously observed diffusions is now classical, see e.g., [2, 3, 4, 5,
6, 7, 8, 9]. When the parameter space is bounded, [10, 5, 6, 7] studied the asymptotic properties
of maximum likelihood and Bayes estimators of the drift parameter as the intensity of noise ϵ → 0
and also as the time horizon T → ∞. When the parameter space is unbounded, [11, 12] studied
the asymptotic properties of MLE as T → ∞.

However, it is difficult to observe the diffusion continuously. In view of this and applications to
finance, parameter estimation for discretely observed diffusions is the recent trend of investigation.
Over the last three decades, several methods of parameter estimation in stationary homogeneous
diffusions have been studied by [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. Beyond the first
order asymptotics, [50] obtained large deviations probability and Berry-Esseen type bounds for
approximate maximum likelihood estimators for homogeneous Ornstein-Uhlenbeck process. [51]
studied Berry-Esseen type bounds for the approximate minimum contrast estimators. See [36] for
results on higher order likelihood asymptotics and Bayesian asymptotics for drift estimation of finite
and infinite dimensional stochastic differential equations.

Many SDEs applied to finance are nonhomogeneous, nonstationary and nonergodic. Stationarity
and mixing seems to be a restriction on many financial applications. For instance, the instantaneous
return and price volatility change over time and price level. For homogeneous but nonergodic
diffusions, in [52] Ait-Sahalia studied asymptotic behavior of maximum likelihood estimator by
obtaining a closed form approximation of the likelihood using Hermite expansion. Parameter
estimation for discretely observed nonhomogeneous diffusion process has been paid some attention.
In [53, 54, 55], Pedersen studied the asymptotic properties of importance sampling type approximate
maximum likelihood estimator based on approximation of the transition probability density of the
discretely observed diffusion using Euler scheme. In [34], Elerian, Chib and Shephard used MCMC
method. In [56], Harison obtained the consistency and the asymptotic normality of the maximum
contrast estimator of a nonlinear parameter in a linear nonhomogeneous SDE. In the likelihood based
approach, it is difficult to calculate the transition probability density of the discretized process. To
avoid this problem, we adopt conditional least squares approach. Also, conditional least squares
estimator is simple to compute for high frequency data and it corresponds to the Euler scheme for
discretization of the stochastic differential equations, see [57]. Here we obtain strong consistency and
conditional asymptotic normality of the conditional least squares estimator (CLSE) of a parameter
appearing nonlinearly in the drift coefficient of a nonhomogeneous SDE under some regularity
conditions. Our arguments are related to the statistical inference for nonergodic models, see e.g.,
[58, 59].

For conditional asymptotic normality we do not need the RIED (rapidly increasing experimental
design) condition i.e. T → ∞ and T√

n
→ 0. This condition was used by Prakasa Rao [14] for

the stationary homogeneous SDE. We weaken the design condition which we call the moderately
increasing experimental design , i.e., T → ∞ and T

n2/3 → 0 to obtain asymptotic normality.

The organization of the paper is as follows : Section 2 describes the model and the assumptions.
Section 3 contains the strong consistency of the CLSE and Section 4 contains conditional asymptotic
normality of the CLSE. Section 5 gives two examples from non-homogeneous diffusion process where
the results of the previous sections apply.
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2 Model and Assumptions

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis satisfying the usual hypotheses on which is defined a
real valued diffusion process satisfying the one-dimensional Itô SDE

dXt = f(θ, t,Xt) dt + dWt, t ≥ 0, X0 = ξ0 (2.1)

where {Wt} is a standard Wiener process adapted to the filtration {Ft} such that for 0 ≤ s ≤
t,Wt − Ws is independent of Fs, f is a known real valued continuous (in θ) function defined on
Θ× [0, T ]×R, where Θ is a compact subset of the real line which contains the unknown parameter
θ and E[ξ20 ] < ∞. Let θ0 be the true value of the parameter, which lies inside the parameter space
Θ.

Suppose the process {Xt} is observed at known real time points tk = k T
n
, k = 0, 1, 2, . . . , n where

T
n

→ 0 and T → ∞. For simplicity only we take equally spaced time interval. One could take
unequally spaced time interval with mesh of the partition going to zero. We estimate θ based on
these observations. Let

Qn,T (θ) :=
n

T

n−1∑
k=0

[
Xtk+1 −Xtk − f(θ, tk, Xtk )

T

n

]2

(2.2)

The conditional least squares estimator (CLSE) of θ is defined as

θn,T := arg inf
θ∈Θ

Qn,T (θ).

Since Θ is compact and f is continuous in θ, there exists a measurable CLSE by using Lemma 7.3.3
of [60, p. 307]. Henceforth, we will always assume the existence of such a measurable CLSE. Note
that this estimator coincides with discretized Euler estimator for nonhomogeneous diffusion.

Let PT
θ be the measure generated by the process {Xt, 0 ≤ t ≤ T} on the space (CT ,BT ) of the

continuous functions on [0, T ] with the associated Borel σ-algebra BT under supremum norm. Let
(Cn

T ,Bn
T ) be the subspace of (CT ,BT ) generated by {Xtk , 0 ≤ k ≤ n} and PT,n

θ be the measure PT
θ

restricted to this space. Let Ξ be the Borel σ-algebra of Θ. Then

θn,T : (Cn
T ,Bn

T ) → (Θ,Ξ).

Throughout the paper f ′ denotes derivative w.r.t. θ, ft denotes derivative w.r.t. t, fx denotes
derivative w.r.t. x of the function f and C denotes a generic constant which may depend on θ but
not on anything else.

We assume the following conditions:
(A1) PT,n

θ1
̸= PT,n

θ2
for θ1 ̸= θ2 in Θ.

(A2) For each p > 0, sup
t

E|Xt|p < ∞.

(A3) f(θ, t, x) is twice continuously differentiable with respect to θ.

(A4) (i) |f(θ, t, x)| ≤ L(θ)(1 + |x|), θ ∈ Θ, x ∈ R, t ∈ [0, T ], sup
θ∈Θ

L(θ) < ∞.

(ii) |f(θ, t, x)− f(θ, t, y)| ≤ L(θ)|x− y|, θ ∈ Θ, x, y ∈ R, t ∈ [0, T ]
(iii) |f(θ1, t, x)− f(θ2, t, x)| ≤ J(x)|θ1 − θ2|, θ1, θ2 ∈ Θ, x ∈ R, t ∈ [0, T ]
where J(·) is continuous and supt E[J2(Xt)] < ∞.
(iv) |f ′(θ, t, x)− f ′(θ, t, y)| ≤ M(θ)|x− y|, θ ∈ Θ, x, y ∈ R, t ∈ [0, T ].
(v) f ′ and fx satisfy the linear growth condition in x.
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(A5) Q′′
n,T (θ) is continuous in a neighborhood Vθ of θ for every θ ∈ Θ.

(A6) For any θ ∈ Θ, there exists a neighborhood Vθ of θ in Θ such that

Pθ

[
lim

T→∞
lim
T
n
→0

T

n

n∑
k=1

{f(θ1, tk, Xtk)− f(θ, tk, Xtk)}
2 = ∞

]
= 1

for every θ1 ∈ Vθ\{θ}.

(A7) Let In,T (θ) :=

n∑
k=1

f ′2(θ, tk, Xtk )∆tk

and Yn,T (θ) :=

n∑
k=1

f ′′2(θ, tk,Xtk )∆tk.

Suppose that there exists non-random function mn,T ↑ ∞ as T → ∞ and T
n
→ 0 such that

(i)
In,T

mn,T

Pθ0→ η(θ0) as T → ∞ and T
n
→ 0

where PT,n
θ0

(η(θ0) > 0) > 0, for all n and T ,

(ii)
Yn,T

mn,T

Pθ0→ ξ(θ0) as T → ∞ and T
n
→ 0

where PT,n
θ0

(ξ(θ0) > 0) > 0, for all n, T .

(A8) Pθ0

{∫ ∞

0

f ′2(θ0, t,Xt)dt = ∞
}

= 1.

(A9) Pθ0 − lim
T→∞

lim
T
n
→0

In,T (θ0)

IT (θ0)
= 1

where IT (θ0) =
∫ T

0
f ′2(θ0, t,Xt)dt.

(A10) E(I−1
T (θ0)) ≤ CT−1.

3 Strong Consistency

We obtain the strong consistency of the CLSE in this section.

Theorem 3.1 Let the assumptions (A1) – (A7) hold. Then there exists a root of the normal
equation Q′

n,T = 0 which is strongly consistent, i.e.,

θn,T → θ0 a.s. [Pθ0 ] as T → ∞ and
T

n
→ 0.
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Proof. Observe that for any δ > 0,

Qn,T (θ ± δ)−Qn,T (θ)

=

n−1∑
k=0

[
X(tk−1)−Xtk − f(θ ± δ, tk, Xtk )

T

n

]2

−
n−1∑
k=0

[
X(tk+1)−Xtk − f(θtk, Xtk)

T

n

]2

=
T

n

n−1∑
k=0

[
f2(θ ± δ, tk, Xtk)− f2(θ, tk, Xtk)

]
−2

n−1∑
k=0

[f(θ ± δ, tk, Xtk)− f(θ, tk,Xtk )]
[
Xtk+1 −Xtk

]
=

T

n

n−1∑
k=0

[
f2(θ ± δ, tk, Xtk)− f2(θ, tk, Xtk)

]
−2

n−1∑
k=0

[f(θ ± δ, tk, Xtk)− f(θ, tk,Xtk )]
[
Wtk+1 −Wtk

]
−2

n−1∑
k=0

[f(θ ± δ, tk, Xtk)− f(θ, tk,Xtk )]

∫ tk+1

tk

f(θ, t,Xt)dt

=
T

n

n−1∑
k=0

[f(θ ± δ, tk, Xtk)− f(θ, tk,Xtk)]
2

−2

n−1∑
k=0

[f(θ ± δ, tk, Xtk)− f(θ, tk,Xtk )]
[
Wtk+1 −Wtk

]
−2

n−1∑
k=0

[f(θ ± δ, tk, Xtk)− f(θ, tk,Xtk )]

∫ tk+1

tk

[f(θ, t,Xt)− f(θ, tk, Xtk)] dt

=: M1n +M2n +M3n.

(3.1)

Let us now estimate M3n. For 0 ≤ k ≤ n− 1 by assumption (A4), we have∣∣∣∣∫ tk+1

tk

[f(θ, t,Xt)− f(θ, tk, Xtk)] dt

∣∣∣∣
≤ L(θ)

T

n
sup

tk≤t≤tk+1

|Wt −Wtk |+ L2(θ)
T 2

n2
sup

tk≤t≤tk+1

{1 + |Xt|} .

Using assumption (A4) again, we obtain

M3n ≤ C(θ0)

{
n−1∑
k=0

∆tk sup
tk≤t≤tk+1

|Wt −Wtk |+
n−1∑
k=0

∆t2k

}
δ.

Since Θ is compact, it follows that

M3n ≤ C(θ0)

{
n−1∑
k=0

∆tk(2∆tk log log
1

∆tk
)1/2 +

n−1∑
k=0

∆t2k

}
a.s. [Pθ0 ]

as T
n
→ 0 by the law of the iterated logarithm for Brownian motion.

Therefore,

M3n = O

(
T 3/2

n1/2
log log1/2

n

T

)
a.s. [Pθ0 ] . (3.2)
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Thus,

Qn,T (θ0 ± δ)−Qn,T (θ0)

=
T

n

n−1∑
k=0

[f(θ0 ± δ, tk, Xtk)− f(θ0, tk, Xtk )]
2

−2

n−1∑
k=0

[f(θ0 ± δ, tk, Xtk)− f(θ0, tk, Xtk)]
[
Wtk+1 −Wtk

]
+O

(
T 3/2

n1/2
log log1/2

n

T

)
a.s.

[
PT,n
θ0

]
=

T

n

n−1∑
k=0

A2
k(θ0)− 2

n−1∑
k=0

Ak(θ0)∆Wk +O

(
T 3/2

n1/2
log log1/2

n

T

)
a.s.

[
PT,n
θ0

]
(3.3)

where

Ak(θ0) := f(θ0 ± δ, tk,Xtk)− f(θ0, tk, Xtk). (3.4)

Let

T

n

n−1∑
k=0

A2
k(θ0) =: Zn,T . (3.5)

Then
Qn,T (θ0 ± δ)−Qn,T (θ0)

Zn,T

= 1− 2

n−1∑
k=0

Ak(θ0)∆Wk

Zn,T
+

O
(

T3/2

n1/2 log log1/2 n
T

)
Zn,T

.

(3.6)

Since

n−1∑
k=0

Ak(θ0)∆Wk is a martingale with respect to the σ-field Fn
T (the sub σ-field of FT generated

by Xtk , 0 < k ≤ n) with increasing process Zn,T , hence by the SLLN for martingales (see [61, 62])

n−1∑
k=0

Ak(θ0)∆Wk

Zn,T
→ 0 a.s. [Pθ0 ] as T → ∞ and

T

n
→ 0 (3.7)

by assumption (A6).

The last term in the r.h.s. of (3.6) converges to zero a.s. [Pθ0 ] as T → ∞ and T
n

→ 0. Hence
from (3.6), we obtain

Qn,T (θ0 ± δ)−Qn,T (θ0)

Zn,T
→ 1 a.s. [Pθ0 ] as T → ∞ and

T

n
→ 0. (3.8)

Furthermore Zn,T > 0 a.s. [Pθ0 ] by (A1). Therefore, for almost every w ∈ Ω, δ and θ there exist
some ϵ, T0 and n0 such that for T ≥ T0 and n ≥ n0 (with T0

n0
< ϵ)

Qn,T (θ0 ± δ) > Qn,T (θ0). (3.9)

Since Qn,T (θ0) is continuous on the compact set [θ0 − δ, θ0 + δ], it has a local minimum and it is
attained at a measurable θn,T in [θ0 − δ, θ0 + δ]. In view of (3.9), θn,T ∈ (θ0 − δ, θ0 + δ), for T ≥ T0

and n ≥ n0. Since Qn,T (θ) is differentiable w.r.t. θ, it follows that Q′
n,T (θn,T ) = 0 for T ≥ T0 and

n ≥ n0 such that T0
n0

< ϵ. Thus θn,T → θ0 a.s. [Pθ0 ] as T → ∞ and T
n
→ 0.
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4 Asymptotic Normality

We need the following theorem in order to prove the asymptotic normality of θn,T .

Theorem 4.1 Under the assumptions (A1) and (A7),

(a)
Q′

n,T (θ0)

I
1/2
n,T (θ0)

D→ N (0, 1) as T → ∞ and T

n2/3 → 0.

The convergence is with respect to any measure µ ≪ P θ0
A where P θ0

A denotes the conditional
probability measure given A := {η(θ0) > 0}

(b) P θ0
A − lim

T→∞
lim
T
n
→0

In,T (θ0) = ∞.

(c) P θ0
A − lim

T→∞
lim
T
n
→0

I−1
n,T (θ0)

n−1∑
k=0

f ′′(θ0, tk, Xtk)∆Wk = 0.

Proof: First, we will show that

I
−1/2
n,T (θ0)

n−1∑
k=0

f ′(θ0, tk, Xtk)Uk − I
−1/2
T (θ0)

∫ T

0

f ′(θ0, t,Xt)dWt

P
θ0
A→ 0

as T → ∞ and T

n2/3 → 0, where

Uk := Xtk+1 −Xtk − f(θ0, tk, Xtk)
T

n
.

Observe that

I
−1/2
n,T (θ0)

n−1∑
k=0

f ′(θ0, tk, X(tk))Uk − I
−1/2
T (θ0)

∫ T

0

f ′(θ0, t,Xt)dWt

=

n−1∑
k=0

f ′(θ0, tk, Xtk)Uk

[
I
−1/2
T (θ0)− I

−1/2
T (θ0)

]
+I

−1/2
T (θ0)

[
n−1∑
k=0

f ′(θ0, tk, Xtk)Uk −
∫ T

0

f ′(θ0, t,Xt)dWt

]

=

n−1∑
k=0

f ′(θ0, tk, Xtk)Uk

{
I
−1/2
n,T (θ0)

[
1− I

1/2
n,T (θ0)I

−1/2
T (θ0)

]}
+I

−1/2
T (θ0)

n−1∑
k=0

f ′(θ0, tk,Xtk)(Uk −∆Wk)

+I
−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

[f ′(θ0, tk,Xtk )− f ′(θ0, t,Xt)]dWt

=: J1 + J2 + J3.

(4.1)

Let

H(i)(t) := f (i)(θ0, tk, Xtk)− f (i)(θ0, t,Xt), i = 0, 1, 2, (4.2)

whenever tk ≤ t ≤ tk+1, 0 ≤ k ≤ n− 1, where f (i) denotes i-th derivative of f w.r.t. θ.

Now for 0 ≤ k ≤ n− 1,

Eθ0

∣∣∣I−1/2
T (θ0)f

′(θ0, tk, Xtk)(Uk −∆Wk)
∣∣∣

7
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= Eθ0

{∣∣∣I−1/2
T (θ0)f

′(θ0, tk,Xtk)
∣∣∣ ∣∣∣∣∫ tk+1

tk

[f(θ0, tk, Xtk )− f(θ0, t,Xt)]dt

∣∣∣∣}
= Eθ0

{∣∣∣I−1/2
T (θ0)f

′(θ0, tk,Xtk)
∣∣∣ ∣∣∣∣∫ tk+1

tk

H(0)(t)dt

∣∣∣∣}
≤

{
Eθ0

∣∣∣I−1
T (θ0)f

′2(θ0, tk,Xtk )
∣∣∣Eθ0

∣∣∣∣∫ tk+1

tk

H(0)(t)dt

∣∣∣∣2
}1/2

≤
{
Eθ0

∣∣∣I−1
T (θ0)f

′2(θ0, tk, Xtk)
∣∣∣ T
n

∫ tk+1

tk

Eθ0 [H
(0)(t)]2dt

}1/2

.

(4.3)

But

[H(0)(t)]2 = [ f(θ0, tk, Xtk)− f(θ0, t,Xt)]
2

≤ 2
{
|f(θ0, tk,Xtk )− f(θ0, tk, Xt)|2 + |f(θ0, tk,Xt)− f(θ0, t,Xt)|2

}
≤ 2L(θ0)|Xtk −Xt|2 + 2L(θ0)|tk − t|2 by (A4) (ii).

Hence
Eθ0 [H

(0)(t)]2 ≤ 2L(θ0)Eθ0 |Xtk −Xt|2 + 2L(θ0)|tk − t|2

≤ 2CL(θ0)(tk − t) + 2L(θ0)(tk − t)2

(see [63, p. 48].

Thus ∫ tk+1

tk

Eθ0 [H
(0)(t)]2dt ≤ CL(θ0)

(
T

n

)2

+ CL(θ0)

(
T

n

)3

where C denotes a generic constant.
Hence the r.h.s. of (4.3) is

≤

{
Eθ0

∣∣∣∣I−1
T (θ0)f

′2(θ0, tk,Xtk )
T

n

∣∣∣∣
[
CL(θ0)

(
T

n

)2

+ CL(θ0)

(
T

n

)3
]}1/2

=

{
Eθ0

[
1

n

In,T (θ0)

IT (θ0)

] [
CL(θ0)

(
T

n

)2

+ CL(θ0)

(
T

n

)3
]}1/2

≤ C
T

n3/2
.

First let us estimate E|J2|. Observe that

J2 = I
−1/2
T (θ0)

n−1∑
k=0

f ′(θ0, tk, Xtk)(Uk −∆Wk)

= I
−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

f ′(θ0, tk,Xtk) [f(θ0, t,Xt)− f(θ0, tk, Xtk )] dt

By Itô formula, we have

f(θ0, t,Xt)− f(θ0, tk, Xtk)

=

∫ t

tk

fu(θ0, u,Xu)du+
1

2

∫ tk+1

tk

fxx(θ0, u,Xu)du+

∫ t

tk

fx(θ0, u,Xu)dXu

=

∫ t

tk

[fu(θ0, u,Xu) + f(θ0, u,Xu)fx(θ0, u,Xu) +
1

2
fxx(θ0, u,Xu)]du

+

∫ t

tk

fx(θ0, u,Xu)dWu

=:

∫ t

tk

F (θ0, u,Xu)du+

∫ t

tk

fx(θ0, u,Xu)dWu.

8
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Thus

E|J2| = E

∣∣∣∣∣I−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

[∫ t

tk

f ′(θ0, tk, Xtk)fx(θ0, u,Xu)dWu

+

∫ t

tk

f ′(θ0, tk, Xtk)F (θ0, u,Xu)du

]
dt

∣∣∣∣
≤ E

∣∣∣∣∣I−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

∫ t

tk

f ′(θ0, tk,Xtk )fx(θ0, u,Xu)dWudt

∣∣∣∣∣
+E

∣∣∣∣∣I−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

∫ t

tk

f ′(θ0, tk, Xtk)F (θ0, u,Xu)dudt

∣∣∣∣∣
=: D1 +D2.

Observe that with Bt,k :=
∫ t

tk
f ′(θ0, tk, Xtk)fx(θ0, u,Xu)dWu, 0 ≤ k ≤ n− 1, we have

D1 = E

∣∣∣∣∣I−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

Bt,kdt

∣∣∣∣∣
≤

{
E(I−1

T (θ0))E(

n−1∑
k=0

∫ tk+1

tk

Bt,kdt)
2

}1/2

=

E(I−1
T (θ0)

n−1∑
k=0

E(

∫ tk+1

tk

Bt,kdt)
2 +

n−1∑
j ̸=k=0

E(

∫ tk+1

tk

Bt,kdt)(

∫ tj+1

tj

Bt,jdt)


1/2

≤

{
E(I−1

T (θ0))

n−1∑
k=0

(tk+1 − tk)

∫ tk+1

tk

E(B2
t,k)dt

}1/2

(the last term being zero due to orthogonality of the integrals)

=

{
E(I−1

T (θ0))

n−1∑
k=0

(tk+1 − tk)

∫ tk+1

tk

{∫ t

tk

E(f ′(θ0, tk, Xtk )fx(θ0, u,Xu))
2du

}
dt

}1/2

=

{
E(I−1

T (θ0))

n−1∑
k=0

(tk+1 − tk)

∫ tk+1

tk

∫ t

tk

{
E(f ′2(θ0, tk, Xtk )E(f2

x(θ0, u,Xu))
}2

dudt

}1/2

≤ C

{
E(I−1

T (θ0))

n−1∑
k=0

(tk+1 − tk)

∫ tk+1

tk

∫ t

tk

{
(1 + E|Xtk |

2)(1 + E|Xu|2)
}1/2

dudt

}1/2

(by A4(V) and (A2))

≤ E

{
C(I−1

T (θ0))

n−1∑
k=0

(tk+1 − tk)

∫ tk+1

tk

(t− tk)dt

}1/2

=

{
CT−1

n−1∑
k=0

(tk+1 − tk)
3

}1/2

= C

(
T 2

n2

)1/2

= C
T

n
(by (A10)).

9
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On the other hand, with Rt,k :=
∫ t

tk
f ′(θ0, tk, Xtk)F (θ0, u,Xu)du, 0 ≤ k ≤ n− 1, we have

D2 = E|I−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

∫ t

tk

f ′(θ0, tk, Xtk)F (θ0, u,Xu)dudt|

≤

{
E(I−1

T (θ0))E(

n−1∑
k=0

∫ tk+1

tk

∫ t

tk

f ′(θ0, tk, Xtk)F (θ0, u,Xu)dudt)
2

}1/2

=

{
E(I−1

T (θ0))E(

n−1∑
k=0

∫ tk+1

tk

Rt,kdt)
2

}1/2

≤

E(I−1
T (θ0))

n−1∑
k=0

(

∫ tk+1

tk

Rt,kdt)
2 +

n−1∑
j ̸=k=0

E(

∫ tk+1

tk

Rt,kdt)(

∫ tj+1

tj

Rt,jdt)


1/2

≤

E(I−1
T (θ0))

(

n−1∑
k=0

E(

∫ tk+1

tk

Rt,kdt)
2 +

n−1∑
j ̸=k=0

{
E(

∫ tk+1

tk

Rt,kdt)
2E(

∫ tj+1

tj

Rt,jdt)
2

}1/2

1/2

≤

[
E(I−1

T (θ0))

{
n−1∑
k=0

(tk+1 − tk)

∫ tk+1

tk

E(R2
t,k)dt

+

n−1∑
j ̸=k=0

{
tk+1 − tk)

∫ tk+1

tk

E(R2
t,k)dt(tj+1 − tj)

∫ tj+1

tj

E(R2
t,j)dt

}1/2

1/2

≤

E(I−1
T (θ0))

C

n−1∑
k=0

(tk+1 − tk)
4 + C

n−1∑
j ̸=k=0

(tk+1 − tk)
2(tj+1 − tj)

2


1/2

≤
{
CT−1(Cn

T 4

n4
+

C(n(n− 1)

2

T 4

n4
)

}1/2

(by (A10))

≤ C(
T 3

n2
)1/2 = C(

T

n2/3
)3/2

since

E(R2
t,k) = E|

∫ t

tk

f ′(θ0, tk, Xtk)F (θ0, u,Xu)du|2

≤ (t− tk)

∫ t

tk

E|f ′(θ0, tk,Xtk)F (θ0, u,Xu)|2du

≤ (t− tk)

∫ t

tk

{
E(f ′2(θ0, tk, X(tk))E(F 2(θ0, u,Xu))

}1/2

du

≤ C(t− tk)

∫ t

tk

{
(1 + E|X(tk)|2)(1 + E|Xu|2)

}1/2
du

(by (A4) and (A2))

≤ C(t− tk)
2.

Thus E|J2| → 0 as T → ∞ and T

n2/3 → 0.
Hence

J2

P
T,n
θ0→ 0 as T → ∞ and

T

n2/3
→ 0. (4.4)

10
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From this we obtain[
In,T (θ0)

IT (θ0)

]1/2

I
−1/2
n,T (θ0)

n−1∑
k=0

f ′(θ0, tk,Xtk )(Uk −∆Wk)
Pθ0→ 0 as T → ∞ and T/n2/3 → 0

which implies [
In,T (θ0)

IT (θ0)

]1/2

I
−1/2
n,T (θ0)

n−1∑
k=0

f ′(θ0, tk, Xtk )Uk

Pθ0→ 0 (4.5)

as T → ∞ and
T

n2/3
→ 0

(by Theorem 4.1(c) and assumption (A9)).
Using (4.5) and assumption (A9) we obtain

J1

Pθ0→ 0 as T → ∞ and
T

n2/3
→ 0. (4.6)

On the other hand,

Eθ0 |J3| = Eθ0

∣∣∣∣∣I−1/2
T (θ0)

n−1∑
k=0

∫ tk+1

tk

H(1)(t)dWt

∣∣∣∣∣
≤

{
Eθ0 |I

−1
T (θ0)|Eθ0

∣∣∣∣∫ T

0

H(1)(t)dWt

∣∣∣∣2
}1/2

=

{
Eθ0(I

−1
T (θ0))

∫ T

0

Eθ0 [H
(1)(t)]2dt

}1/2

=

{
Eθ0(I

−1
T (θ0))

[
nCL(θ0)

(
T

n

)2

+ nCL(θ0)

(
T

n

)3
]}1/2

−→ 0 as T → ∞ and
T

n
→ 0 by (A4) and (A8).

Hence

J3

Pθ0→ 0 as T → ∞ and
T

n
→ 0. (4.7)

Combination of (4.4), (4.6) and (4.7) proves Theorem 4.1 (a).
(b) follows from (A9) and (A8) since, from (A8) we have I∞(θ0) = ∞ a.s. [Pθ0 ].
(c) is a discretized version of the corresponding continuous result in Borkar and Bagchi (1982).

We omit the details. In the stationary homogeneous case, the arguments were used by Kasonga
(1988).

Theorem 4.2 Under (A1) – (A10),

I
1/2
n,T (θ0)(θn,T − θ0)

D→ N (0, 1)

as T → ∞ and T

n2/3 → 0 conditionally. The convergence is w.r.t. any measure µ ≪ P θ0
A .

Proof. In view of assumption (A5), we can apply Taylor’s expansion of Q′
n,T (θ) around θn,T and

write
Q′

n,T (θ0) = Q′
n,T (θn,T ) + (θ0 − θn,T )Q

′′
n,T (θn,T + βn,T (θ0 − θn,T ))

= (θ0 − θn,T )Q
′′
n,T (θn,T + βn,T (θ0 − θn,T ))

where |βn,T | ≤ 1 a.s. [Pθ0 ] for n and T sufficiently large since Q′
n,T (θn,T ) = 0. Further, since

In,T > 0 for n and T large with Pθ0 - probability approaching one by (A7), hence we have

Q′
n,T (θ0)

I
1/2
n,T (θ0)

=
(θ0 − θn,T )Q

′′
n,T (θn,T + βn,T (θ0 − θn,T ))

I
1/2
n,T (θ0)

.

11
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Since θn,T → θ0 a.s. [Pθ0 ] as T → ∞ and T
n

→ 0 by Theorem 3.1 and since Q′′
n,T (θ) is continuous

by (A5), it follows that

Q′′
n,T (θn,T + βn,T (θ0 − θn,T ))−Q′′

n,T (θ0) → 0 a.s.[Pθ0 ]

as T → ∞ and T
n
→ 0.

Furthermore, In,T (θ0) → ∞ in P θ0
A -measure as T → ∞ and T

n
→ 0 by Theorem 4.1 (b). Hence

Q′
n,T (θ0)

I
1/2
n,T (θ0)

−
(θ0 − θn,T )Q

′′
n,T (θ0

I
1/2
n,T (θ0)

P
θ0
A→ 0 as T → ∞ and

T

n
→ 0.

This property together with Theorem 4.1(a) prove that

(θ0 − θn,T )Q
′′
n,T (θ0)

I
1/2
n,T (θ0)

D[P
θ0
A

]
→ N (0, 1)

conditionally as T → ∞ and T

n2/3 → 0.
Theorem 4.1(c) shows that

Q′
n,T (θ0)

In,T (θ0)

P
θ0
A→ 1 as T → ∞ and

T

n
→ 0.

Therefore,

I
1/2
n,T (θ0)(θn,T − θ0)

D[P
θ0
A

]
→ N (0, 1) conditionally as T → ∞ and

T

n2/3
→ 0.

This completes the proof of the theorem.

5 Examples

(a) Mean Reversion Process with Drift

We verify the conditions of the theorems for the mean reversion model with drift where Xt evolves
according to

dXt = {θ − α(Xt − θt)}dt+ dWt

and α > 0 is known. This is a nonhomogeneous generalization of Vasicek model used for modeling
short term interest rate in finance, see [57]. The component −α(Xt−θt) in the drift function implies
that the process is ‘forced’ to revert to its mean. Here

θn,T =

∑n−1
k=0 (1 + αtk)[Xtk+1 −Xtk ] + αT

n

∑n−1
k=0 (1 + αtk)Xtk

T
n

∑n−1
k=0 (1 + αtk)2

,

In,T (θ0) =
T

n

n−1∑
k=0

(1 + αtk)
2.

We have

Pθ0 − lim
T
n
→0

In,T (θ0) =

∫ T

0

(1 + αt)2dt,

Pθ0 − lim
T→∞

lim
T
n
→0

In,T (θ0) = lim
T→∞

∫ T

0

(1 + αt)2dt = ∞.

Hence (A6) and (A8) hold.

12
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Here

mn,T =
T

n

n∑
k=1

t2ke
θg2(tk)

hence

In,T

mn,T

Pθ0→α2 as T → ∞ and
T

n
→ 0 and f ′′(θ, t,Xt) = 0.

Hence condition (A7) is verified. Condition (A9) holds with IT (θ0) =
∫ T

0
(1 + αt)dt. The other

conditions are easy to verify. Hence, for the estimator θn,T , Theorems 3.1, 4.1 and 4.2 hold, i.e.,
θn,T is strongly consistent and conditionally asymptotically normal.

(b) Nonhomogeneous Ornstein-Uhlenbeck process

We verify the conditions of the theorems for the nonhomogeneous Ornstein-Uhlenbeck process {Xt}
which evolves as the unique solution of the equation

dXt = −θg(t)Xtdt+ dWt, X0 = 0, θ ∈ Θ ⊂ R\{0}

where g : R+ → R is measurable with
∫ t

0
g2(s)ds < ∞ for every t. In this case

Xt = e−θ
∫ t
0 g(s)ds

∫ t

0

eθ
∫ s
0 g(u)dudWu,

θn,T = −

n−1∑
k=0

g(tk)Xtk

(
Xtk+1 −Xtk

)
T
n

n−1∑
k=0

g2(tk)X
2
tk

and

In,T =
T

n

n−1∑
k=0

g2(tk)X
2
tk .

Let

IT =

∫ T

0

g2(t)X2
t dt.

13
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Note that

Eθ0 |In,T − IT |

= Eθ0

∣∣∣∣∣Tn
n−1∑
k=0

g2(tk)X
2
tk −

∫ T

0

g2(t)X2
t dt

∣∣∣∣∣
= Eθ0

∣∣∣∣∣Tn
n−1∑
k=0

g2(tk)X
2
tk −

n−1∑
k=0

∫ tk

tk−1

g2(t)X2
t dt

∣∣∣∣∣
= Eθ0

∣∣∣∣∣
n−1∑
k=0

∫ tk+1

tk

g2(tk)X
2
tkdt−

n−1∑
k=0

∫ tk+1

tk

g2(t)X2
t dt

∣∣∣∣∣
= Eθ0

∣∣∣∣∣
n−1∑
k=0

∫ tk+1

tk

[
g2(tk)X

2
tk − g2(t)X2

t

]
dt

∣∣∣∣∣
= Eθ0

∣∣∣∣∣
n−1∑
k=0

∫ tk+1

tk

[g(tk)Xtk − g(t)Xt] [g(tk)Xtk + g(t)Xt] dt

∣∣∣∣∣
≤

n−1∑
k=0

Eθ0

∣∣∣∣∫ tk+1

tk

[g(tk)Xtk − g(t)Xt]
2 dt

∫ tk+1

tk

[g(tk)Xtk + g(t)Xt]
2 dt

∣∣∣∣ 1
2

≤
n−1∑
k=0

∣∣∣∣∫ tk+1

tk

C(tk − t)2dt

∫ tk+1

tk

L(θ)
{(

1 + |Xtk |
2)+ (1 +X2

t )
}
dt

] 1
2

(by (A4))

→ 0 as T → ∞ and
T

n
→ 0.

Hence

PT,n
θ0

− lim
T
n
→0

In,T (θ0) =

∫ T

0

g2(t)X2
t dt

and

PT,n
θ0

− lim
T→∞

lim
T
n
→0

In,T (θ0) = lim
T→∞

∫ T

0

g2(t)X2
t tdt = ∞.

Hence (A6) and (A8) hold.

Here

mn,T =
T

n

n∑
K=1

g2(tk)e
θg2(tk).

For simplicity, take g(tk) = tk.

Then

mn,T =
T

n

n−1∑
k=0

t2ke
θt2k =

n−1∑
k=0

k2(
T

n
)3e

θ T2

n2

= (
T

n
)3
n(n+ 1)(2n+ 1)

6
e
θ T2

n2 ,

In,T =
T

n

n−1∑
k=0

t2kX
2
tk

= (
T

n
)3

n−1∑
k=0

k2X2
tk .

14
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Following the method in [64], we have

exp
θT 2

2
XT → ζ a.s. where ζ is N(0,

( π

4θ

)1/2

)

hence it is easy to show that

In,T

mn,T
=

6e
−θ T2

n2

n−1∑
k=0

k2X2(tk)

n(n+ 1)(2n+ 1)
→ ζ2 in probability as T → ∞ and

T

n
→ 0.

On the other hand
f ′′(θ, t,Xt) = 0.

Hence condition (A7) is verified. Other conditions are easy to verify. Hence the estimator θn,T is
strongly consistent and asymptotically normally distributed as T → ∞ and T

n2/3 → 0.

Remarks

(1) The results obtained here can be generalized to the case of SDE of the type

dXt = f(θ, t,Xt)dt+ g(θ, t,Xt)dWt, t ≥ 0

imposing regularity conditions on the volatility g. Using Doss tranform, this model can be reduced
to our model with unit diffusion coefficient.

(2) Berry-Esseen type bounds and large deviation principle for the CLSE remains to be investigated.
For Berry-Esseen type bounds of approximate maximum likelihood estimator, see [65].
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