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Abstract

In this paper we obtain some identities related to the Hamiltonian operator composed with
momentum and position operators and Euler polynomials and confirm these properties through
examples.
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1 INTRODUCTION and g as

Various functions appear in many areas [p,q] = pqg — qp
of theoretical physics, for example, Euler

polynomials is shown in the field of non- and their anti-commutator as
commutative operators in quantum physics. Let

us define the commutator of two operators p {p,q} = pq+ qp.
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Generally we define the iterated anti-

commutators as

{p,q}2 = {{p, ¢}, 4},
v ats ={{{p ¢}, ¢}, ¢} = {{p, a}2, 4}

and moreover for all positive integers n, we have

{p,a¢}n = {{p, ¢}n-1,4}-

We introduce the Hamiltonian operator H as

1
H = 5 (p2 + q2) .
C. Bender and L. Bettencourt [1] suggest the
following result

1 1 1
sty = g {ama+Hl
where we can find the Euler polynomials E,, (z)
(n € N) are given by the power series

_ 1.2
n! e® +1 (1.2)

n=0
The integers E, = 2"E,(1/2) are called Euler
numbers. The first few Euler polynomials are

EO(:I:):l,

1
El(x):as—i,
Eo(z) = 2* —

3 o 1
By(z) =2° — 22° + =
3(z) =z 5 t
Ey(z) = z* — 22° + x,

1
E5(a:):x5—gr4+g$2—§

It is well-known [2] that

AGOEDS (Z) Baw(0)a® (13)

k=0
and

E,(x)+E,(x+1) = 22" foralln € N. (1.4)

In this article we start from the paper [3]
and we try to generalize some identities

shown on it thus we obtain the following
relations of the Hamiltonian operator involving
Euler polynomials :

Theorem 1.1. Letn € N anda € R. Then we

have

" (n 1
£ (i)

(ot =5h et =51}

1 a
- H——} .
on—1 {q’ 2J,

Corollary 1.2. Letn € N anda € R. Then we
have

> (Z) En_k(o)%

k=0

“({o# =5} et =5 +2))

1 a 1 a
I IS S I O
27L71 {q 2 n 2n71 q 2 + n

The interesting thing of these results is that
multiplying Hamiltonian operators by Euler
polynomials is simply modified to a Hamiltonian
operator bracket.

2 SOME IDENTITIES FOR
THE HAMILTONIAN
OPERATOR

Let N and R denote the sets of all positive
integers and real numbers, respectively. We
introduce the symbolic notation, with a € R,

({g. H} +a)n = > (Z) " Mg, H}  (2.1)

k=0

and the convention {q, H}¢ = q.

Proposition 2.1. (See [3]) Fora € R andn € N,

{o#+5} =UaH}+a),.

Corollary 2.1. Letn € Nanda € R. Then
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(2n> {q’H}2ka2n72k
k=0

RACERE PSS CER I
:0 (Z: ‘—:: 1) {q, H}op41a”" 2"

1
g H }
z{q 2 o
+1{ H
2 q’

Proof. By (2.1) and Proposition 2.1 we observe
that

{q’H+2}

B 5}2n+1 ’

(e, H} +a),

-y <Z> a" " {q, H}x

2.2)

and

{030,

={¢H} —a),
_Z< )( an k{qu}k

(2.3)

(a) After puttingn = 2N in Eqg. (2.2) and (2.3),
adding them we obtain

22 ( ){q,H}gkaQN 2k
- (25 ) @ g 1
k=0
2N
+>° (2,5 ) (—a)™*{g, Hhe

k=0

={e ), et 5,

(b) Letn = 2N + 1in (2.2) and (2.3).
adding them we have

Then

N
2N +1 2N—2k
2;} <2k+1>{q,H}2k+1a
2N+1
2N +1 _
- (" )N o

k=0
2N + 1 _

2N+1
:{%H"'*} +{QaH
2JaN+1

2

_2}
2Jong1

Proposition 2.2. (See [3]) An equivalent form of
identity (1.1) is

1 1 1
— g H-= — g H = {q,H"}.
o {q, 2} + {q, + 2}n {g, H"}

From the above proposition we consider the
following lemma and we can see that Proposition
2.2 is the special case a = 1.

Lemma 2.2. Letn € N anda € R. Then we have

a 1 a
Ln-2h o fon-g)
2n{q IR 5 Ty,
a—1\"
_ H— .

Proof. From (1.1) we can easily know that

s, s B

which deduces that by (1.4)
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and

2 2
HqH:qH + H*q q.

This leads for the case n = 2 that

i({or-5),+ far-541))

- ({fnn-g-3)

O
Example 2.3. In Lemma 2.2 the case n = 1 +{{q’H7§+1} H - §+1})
implies that :i<q(H’% ( ) (H,,)
%({q,H—%}lﬂL{q,H—%ﬂLl}l) +(Hfg)2q+q(H—g+1)2
=5 (a(r-5) + (#-5)a +2(H-5+1)a(H-5+1)
e (o)) s 2e))
— gH + Hq —aq +
_ q{q,H _qa ;f} 'q H;q + g —|—HqH2— (a — 1)Hq
But since —(a= gl + (? et 1>
=H’q+qH®> — (a—1)Hq— (a — 1)qH
[p, H] = — and  [q,H] =ip a? 1
we have +<?_a+§>q
a—1\?
qH? —2HqH + H’q _{q’<H 2 )}
H|H — H|q, H]
= [lg, H], H]

H]
H]
/q)

=g,
[
[ip,
ilp,
i(—i

q

Proof of Theorem 1.1. By (2.1) and Proposition
2.1 we note that
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Then by replacing & — [ with p and using

n k
(500
n! k!
T K-k Nk —1)
n! 1
W (n—k)(k—1)!
n! ' (n—=10)!
Nn =0 (n—k)(k—1)

(1.3), and (1.4), the above identity becomes

This concludes that by (2.1) and Proposition 2.1

3 <Z> B i(0) 5

k=0

x ({q,H—%}k—F{q,H—g—Fl}k)
=y (7) {0, H}i(a)"

1=0
= 5 (0. HY —a),

1 a
_ Hf—} .
on—1 {q’ 2Sn
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Example 2.4. The case n = 1 in Theorem 1.1
shows that

<({or -5} et -5+1})
o)+ (19
+q(Hf%+1)+(Hfg+1)q)

=qH + Hq— aq

={o1-3},

thus it is satisfied. Also if n = 2 in Theorem 1.1
then we have

H2

2{‘1

and so it is satisfied.

H2 2
—|—qT —aHq— aqH—i—HqH-i-?q

Proof of Corollary 1.2. From Theorem 1.1 we
deduce that

II 3
7 N

> 3
~_

=

3

g;- IS}
—~

e =
| =

O({q H77+1} {q H—7+2})
{orn=5} -~ g {on-5+1)

O

= 271,71

Example 2.5. Ifn = 1 in Corollary 1.2 then we
obtain

5 ()0

k=0
a
)34}
X({q 2 g 2Jr k
:72(1
—{ H-2 —L{ H—9+1}
¢ 2 on-1 1% 2 1

And ifn = 2 in Corollary 1.2 then
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forn € Nand a € R. The case a = 1 was shown
in [3].

2 ()

k=0

(o2}, {an-5+3})

= —2qH—2Hq+2aq—2q

; {q’ }2 {q’ 7g+1}2'
3 CONCLUSION

We generalized the following identity
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