British Journal of Mathematics & Computer Science

13(3): 1-12, 2016, Article no.BIM CS.10620
I SSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org SCIENCEDOMAIN

Combined Solitary Wave Solutionsin Higher-order Effects
Optical Fibers

J. R. Bogning®’, C. T. Djeumen Tchaho® and H. M. Omanda®

'Department of Physics, University of Bamenda, Higher Teadkaising College Bambili, P.O.Box. 39,
Bamenda, Cameroon.

2University of Yaoundé, Faculty of Science, Laboratory of MechaPi€sBox. 812, Yaoundé, Cameroon.
SLAPLUS, Ecole Normale Supérieure de Libreville, P.O.B@®09, Libreville, Gabon.

Article Information

DOI: 10.9734/BIMCS/2016/10620
Editor(s):
(1) Doina Bein, Applied Research Laboratory, The Penmsyb State University, USA.
Reviewers:
(1) Xiaohua Liu, Guizhou Minzu University, China.
(2) Kamruzzaman Khan, Pabna University of Science aahiiology, Bangladesh.
(3) A. A. Zakharenko, International Institute of Zakbiako Waves (11ZWs), Krasnoyarsk, Russia.
Complete Peer review Historfattp://sciencedomain.org/review-history/12567

Original Research Article Received: 01 April 2014
Accepted: 03 November 2015
Published: 05 December 2015

Abstract

We construct in this manuscript, the combined solitaryeasolutions of nonlinear Schrédinger equatjon
that governs the dynamics of propagation of waves in offileais with higher-order effects. We base
our survey on the sum of two analytic shapes of the soltanes of bright and dark type to form|a
resulting solitary wave to determine.

Keywords: Combined solitary wave; BDKm; higher order effemtical fibers; nonlinear Schrédinger
equations.

1 Introduction

The physical systems are generally governed by the pditfatential equations that are in most cases
nonlinear. When these partial differential equations arerlirbay obey the principles of superposition and
especially of the uniqueness of the solution. When thesealpditierential equations are nonlinear, the
principle of linear combination of the solutions is noplagable and the approach in the resolution varies
according to the type of equation and especially of the tf solutions that one wants to obtain. Thus, it
becomes difficult to speak of standard method of resolaiamique solution. It is exactly for this reason
that the multiple methods and different approaches developethby authors exist [1-16] with the aim of
solving the considered equation completely or to find the agpex solutions with a minimal error margin.
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Beyond all these methods of integration of the nonlineaiapalitferential equations, the research of the
forced solutions occupies an important place. To adapteeexploit the natural phenomena which surround
us in order to improve our daily work. Among the seadcbautions, the solitary wave probably occupies a
very important place because of its futuristic applicatidiés fact is translated in many articles written by
many researchers [17-22]. In this dynamics, we constmtessolitary wave solutions of the nonlinear
partial differential equation that govern the propagatiowa¥es in the higher nonlinear effects optical
fibers and govern by the equation [23,24].

U,-iaU ~ia,u[u -ay m—a4(p|2U )t ey (p |2)t =0, @)

where U is the slowly varying envelope of the electric field, thiscriptszand t denote the spatial and
temporal partial derivatives, and;, &,, &;, &, and Oy are real constants related to the group-velocity

dispersion, the self-phase modulation, the third-order digpgrdhe self-steepening, and the delayed
nonlinear response effect, respectively. The solutionsvileatonstruct effectively are of type combined
solitary wave; that means resulting from a combinatibthe bright solitary wave and dark solitary wave.
Otherwise to say the solutions that we want to conistmecof the shapes

sinh’ at
cosH at)

U, (z1)= Zeﬁ

exp[ (kz-wi)], @)
where g, a are constantsk the spatial frequency of the wave aadl the angular frequency of the wave
to be determined as a function of the paramem;s()( =1, 2,...,5) of eq.(1),1 =1,2,.., j=0,1 and

= -1. If we define for example from eq. (2), two solutions as

Ul(z,t):( a__ psinn(at pr[—. kz- )], @

cosh(at)  cosfiat)
and

u,(z t):[coshg(m) +d cszzlshﬁ(a;t) Jexp[ (kz- ], ()

where the constant€®t, b, C and d are to be determined, we see tha is constituted by

U, = (a/ cost(at)) ex;ﬁ—i (kz—a)t)] which is a  bright solitary wave and
U,= (bsinh(at) / cos{art) ) exE)—i (kz—- i) ] which is a dark solitary wave. On the other hand
U, is constituted byU,, = (C/COShZ(a’t ) ex;ﬁ kz—a)t)] which is a bright solitary wave and

U, = (d sinh(at) /cosh(at) ) ex@—l (kz-wt) ] which is a dark solitary wave.
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Fig. 1. Curves of |U11|, |U12|, |U21| and |U22| asa function of time; (a): Thered curveindicatesthe
profile of |U11| for a=5 and a =1; thegreen curvetheprofile of |U12| for b=5and o =1;
(b): Thered curveindicatesthe profile of |U21| for c=5 and a =1; thegreen curvegivesthe

profile of |U22| ford=5and a =1
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Fig. 2. Curves of |U1| and |U2| asafunction of time; (a): Thered curveindicatesthe profile of |U1|
for a=6,b=2 and a =1, thegreen curvethe profile of |U1| fora=2,b=6and a=1;
(b): Thered curveindicates the profile of |U2| for c=6,d =2 and a =1; thegreen curvegives
the profile of |U1| forc=2,d=6and a =1
The curves of the Fig. 1 show the profiles of single sgliteaves and the curves of the Fig. 2 show the

profiles of the combined solitary waves. In the two cdkesred curves indicate the bright solitary waves
and the green curves indicate the dark solitary waves.
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Thus, the combined solutionbl1 and U2 can be bright or dark type according to the choice of the
coefficientsa, b, cand d. Whena > b, U, is a bright soliton. It becomes a dark soliton waer b.

ForU,, we have the same findings depending@r d or c< d. The above diagrams illustrate these

different analyses. So in a general manner when we hesguliant solitary wave formed of an association

of two solitary waves of type pulse and kink, the profilehe solitary wave obtained is either the one of a

pulse or a dark. All depends on the choice of the valugmmameters. In some cases the obtained profiles
can stretch toward a bright or toward a dark without thkecomplete shape of the bright or the dark. In the
setting of this survey, what interests us is the calBerevthe resultant solitary wave is formed of an

association of a pulse and a kink and why? Becauseithe&the solitary waves of the same nature gives a
resultant solitary wave of this considered nature. Thgsestof solutions as we want to look for can have

numerous applications in physics. It is besides this primaphnalysis that motivates the construction of the

solutions as we propose in this work. We organizertheuscript in the following manner:

Before constructing some solutions under the shape proposed(R),eqe look for in section 2 of the
possible solutions of the shaémsinh”‘(at) /COSH(a’t)) eXE)—i(kZ—a)t)]. In section 3, we

construct the solutions of the type given by eq. (3). Sedjgroposes the solutions of the type given
by eq. (4). Finally, section 5 concludes the work.

2 Method of Resolution

The principle consist of searching globally for the sohsiof eq. (1) in the form
. j i
v=Y g (sinh(ax) /( cost{a x) . (5)
]

wherei =0,1,..; j=0,1,..; @ and a; are the coefficients to determine. When we introducatisatz
(5) in eq. (1) we obtain with the help of adequate transfoomaf7,8], an equation of the form

> F(a )/cosH‘(ax)+_Z G(g ) sinf{a » /cosh(a ¥

i,jn ijm

+% H (qj)cosﬁ(ax)+§T(q) cosh(a ¥ sinfw >§+IZJ: v\,( ﬁa): '

(6)

F (aj ) , G(a] ) H (an ) T(aj ) andW( 3 ) are linear functions of the coefficieng . From eq. (6),

we obtain the series of equations of constato solve. Notably the equations such as follows [7,8]:

Term inl/cosH (ax),
> F(a)=0. ™
i

Term insinh(ax) / cost (ax) .,

2.6(3)=0. ®



Bogning et al.; BJIMCS, 13(3): 1-12, 2016; Article.BIMCS.10620

Term incosH (ax),

2H (a)=0. ©
TermincosH (ax) sin{ax),

;T(Q;FO, (10
Term in(sinh(ax))” /( cosi{ax))’,

iZJ_:W( g)=0. (11)
Finally, the resolution of the above egs. (7), ..., (1eipts to obtain the constang .

3 Results and Discussion

3.1 Pulseor Kink Solitary Wave Solution

In this section we look for the single solitary waveg #ra the solutions of the eq.(1). Thus, we suppose that

sinh™ (at :
U(zt)= a¢ expf —i( kz- ], (12)
cosH (at)
is the solution of eq. (1) wher@, @ and K are constants to be determinddl, and Mare the whole

numbers to be determined anfl = —1. The ansatz (12) can represent the analytic shapleeo$dlitary
wave of type pulse or kink according to the choice ofghemetersdn and M. For examplem =0 and
n# 0, we have a solitary wave of type pulse. Far=1 and n # O, we have a solitary wave of type kink.

Then inserting eq. (12) in eq. (1) yields
sinh™ (at)

= O,
cost (at) w

D Fn(aka,nm

where an (a, k,a,n, m) are the function of the constars Kk, @ , N and M. The non trivial solutions
are only gotten form=0 and m=1. Thus, the coefficients of the terms ib/ cosi (a't),
1/coshat), sinh(at) /costi(at) andsinh(at) /cosfi (at) give respectively

012(2&)0'3_29'1)_(a'z"'c‘)a'4)|al2 =0, (14)
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ik +a,(1+ o) a® - 20°wa, |- aw’ = 0, (15)

6a,a+(3a,+2,)|d" = 0, 16}
and

2w+ (200f +1+of ) a’a, = (17)

The resolution of eq. (14) and eq. (16) gives

_ -6(a,a, +war g ) 18)
60)0’30’4 - 40)0’30’5- &)'10'4_ 479'5’
and
|a|2 :02(2w3_2a1) (19)
a,+wa,

with 6a,a, — 4w o.— 6o ,— 4 g # Canda, +aa, # 0. On the other hand eq. (15) gives
k=a,(1+a”)a® - 20°wm, + ia 0, (20)
where & is given by eq. (18). Similarly eq. (17) is written
(2cr3 + azas) W’ - 20,0+a’a, = 0. (1)

In the case where the conditicﬁ'f —0’20’3 (20’3 + 0’20’3) = 0 is verified, we obtain from eq. (21)

2 2 3 2
_ ali\/al -a a3(2a +a a3)

w= 22
2a° +a’a, 22
Taking into account the egs. (18), (19), (20) and (22) in eq, {2pbtain the solution
200, - 20 .
U(zt)=+a |——=—Lsech(at) expa.«w’ z exp-i(Qzwi], 23
(29 =sa[° = sech(at) exgase? 4 exp- (@2 w))] (@3

with Q =a, (1+ af)az - 2a2an3 such that@ and @ are given respectively by eq. (18) and eq. (22).
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3.2 Solitary Wave which Results from the Combination of the Solitary Waves of Fir st
Order

The substitution of eq. (3) in eq. (1) leads to

> (Hy (a,0) +iG,,(a b))%:o, ¢=12,..,5 p= 0, (24)

q.p

where qu(a, b) and G, (a, b) are the functions oft and b, i =—1. From eq.(24), we obtain the

series of equations of constar@sand b

Zqu(a,b):O, (25)
a.p

and
> G, (ab=0. (26)
a.p

Some particular solutions a and b can be obtain by summing eq. (25) and eq. (26). Then eqa(®b)
eq. (26) lead to

Z(qu(a,b)+qu(a,b))=0. (27)

q,p

Thus, from eq. (27), we have

Terminl/cosH (at),
a’a(a,+9a,)-a(as+3a,)b’ + 2 ,ab= G, (28)

Termin1/cosh (at),

b® -a’ =-—(a,w+2a,), oj2
Termin1/coslf (at),

a,a(20° -6a8°) (3,0’ + Zrw)a - m,a= (. (30)
Termin1/cosh(at),

asa(4a2b— 2b3)—cr2 abz+( aw’ - a+aw-aq - @ &0 (31)
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Another equations which derive from the termsdiahat /coshat, | =1,2,...,5 can allow to establish the

constraint relations between the parameters of the ghggitem governs by eq. (1). Combining eq. (29)
and eq. (30), we obtain

da,a,08" + 205a+ 2a4a3+az( I+ 27/9))0 = (32)
Equation (32) is a quadratic equationdn It resolution gives

a:—azzix/E

33
da,a, 53

with A = a; —40’20’40’2(20’40’2+ Iriw*+ Zrlazw) such thatA’ 2 0. Inserting eq. (33) in eq. (29),
we obtain

b:i\/4a1a [(—af i\/E)z ~160,02 (a w+ 2a1)} . (34)
Uy

Taking into account eq. (33) and eq. (34) into eqg. (3), we obtain

(%Jsem(m) |
U,(zt)= exg —i (kz—at)].  (35)

: J b (o B -t6aai(agor 2r) | )

da,a,

3.3 Solitary Solution Wave which Results from the Combination of the Solitary
Waves of Second Or der

Substituting ansatz (4) in eq. (1), we obtain the range equati

sink’ (at)

sintf (at)
R,(aba,w K—7>——5+D T (abhow §—F—=
ﬂz;‘ ( )cosH‘(m) ”Z;‘ ( Y

= C,
costi(at) o

where Ryy ( aba,w, k) and Tyy (a, ba,w, k) are functions of constants to determife= —1.

The real part and the imaginary part of eq. (36) leathéoset of equations according to the Bogning-
Djeumen Tchaho-Kofané method (BDKm) [7,8]

YR, (aba,wKk=0 37)
My

and
> T,(abawk=0 (38)
Y
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The combination of eq. (37) and eq. (38) which derive fromstime terms i1/ cosH (a't) L M=,
leads to the following equations:

Termin1/cosH (at),
4a(c’d- o) (a, +a,) =0, 013
Termin1/cosi (at),
8c’da (a, +a,) + oaz(rf—Sdz): 0, (40)
Termin1/cosh (at),
2(a,+aa;)c? - (2a,+aa,+ Jna,)d* + 1w g? = ( (41)
Termin1/cosH (at),
2a°c*d(a, +a,) - 6aa’c+ r,d’c+ Gy g we= G, (42)
Termin1/cosh (at),
Aa,aaxd —a3(2013d - Gaafd) + (a,+a;) = (43)
Termin1/cosh(at),
a,wad -a,(-a®+2a0’)d=0. (44)

The resolution of eq. (39) supposes three pod#siliThe case wherd ( ¢ - d2) =0 anda,+a, =0,

the case whered(CZ—d2)=0 and a,+a,#0 and the case whered(Cz—dz)iO and

a,ta; =0. Itis important to mention that we are lookiray the non trivial solutions of eq. (1); s

and b must be different from zero and only the cab& 0, ¢ # d and @, +a; =0 permits to obtain the
non trivial solutions. Thus, taking into account €9€) into eq. (40) yields

c® =3d°. (45)
Introducing eq. (45) in eq. (41) gives

12a0,0°

d?=
aa,-4a,-3aa,

(46)
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and

, 36a,a°
c° = :
aa,-4a,-3aa,

(47)

with aa, —4a, - 367675 # 0. Taking into account eq. (46) and eq. (47) into(4§) and eq. (49) allows to
obtain @ as a function ofr, (i =12,..., 3 and consequently the relation which can help terdehe w

as a function ofg, such as

200, (2400 00— 241 ,— 108 )
(48)
= (4ala)+ 6a3a12)( 60,a,- 1&g~ &g+ 1&g @)’

Introducing the obtained expressions @f and w in equations eq. (37) and eq. (38), we obtain the
expression ok as a function of; . Then taking into account eq. (39) and eq. (4@dqn(4), we obtain

i6a\/aa _421 o sedv’ (at)
U,(zt)= M ° exp| -i (kz—wt) |- (49)
J_ra'\/ 120, sinhat sed’ (at)
aa,-4a,-30a,
4 Conclusion

The aim of this work was to construct some forcelitasy wave solutions. For this reason we carioed
choice on the combined solitary wave solutions theans a solitary wave that result from the astooiaf

a solitary wave of type pulse and kink. That i©ktary wave which can take according to the chatéhe
parameters, a shape pulse or kink. In the setfil8p&m used in this work, when one has several gqoa
of the constants, one limits itself to the resaltof the equations of the first range susceptiblproduce
the solutions that come closer to best of the esalettion. In case of the solution given by the @), we
concentrated our analysis to the range of equatiodgcost at with =1,2,...,7. What spur our interest
in the construction of such solutions is that thedeations could have important applications ingby or in
engineering of telecommunication. The survey madhis manuscript can be spread to the cases winere
resultant solitary wave solution is an associatibthree solitary waves, four and more.

Competing Interests
Authors have declared that no competing interedst.e
References

[1] Fan E. Extended tanh-function method and its apfitins to nonlinear equations. Physics Letter A.
2000;277:212-218.

[2] Parkes EJ, Duffy BR. An automated tanh-function hoétfor finding solitary wave solutions to
nonlinear evolution equations. Comput. Phys. Comn@86;98:288-300.

10



Bogning et al.; BJIMCS, 13(3): 1-12, 2016; Article.BIMCS.10620

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

Khater AH, Malfiet W, Callebaut DK, Kamel ES. Thanh method, a simple transformation and
exact analytical solutions for nonlinear reactidgfivdion equations. Chaos, Solitons & Fractals.
2002;14:513-522.

Kaup DJ, Lakoba TI. Variational method: How it q@@nerate false instabilities. J. Math. Phys. 1996;
37(7):3442-3462.

Wazwaz AM. The tanh method for traveling wave dohg of nonlinear equations. Appl. Math.
Comput. 2002;133:213-227.

Wazwaz AM. A computational approach to soliton sohs of the Kadomtsev- Petviashvili equation.
Appl. Math. Comput. 2001;123:205-217.

Bogning JR, Djeumen Tchaho CT, Kofané TC. Consimucdf the soliton solutions of the Ginzburg-
Landau equations by the new Bogning-Djeumen Tchébfané method. Phys. Scr. 2012;85:
025013-025018.

Bogning JR, Djeumen Tchaho CT, Kofané TC. Geneatiin of the Bogning-Djeumen Tchaho-
Kofané method for the construction of the solitargves and the survey of the instabilities. Far East
J. Dyn. Sys. 2012;20(2):101-1109.

Djeumen Tchaho CT, Bogning JR, Kofané TC. Modulatdliton solution of the modified
Kuramoto-Sivashinsky's equation. American JournalComputational and Applied Mathematics.
2012;2(5):218-224.

Djeumen Tchaho CT, Bogning JR, Kofane TC. Multiidol solutions of the modified Kuramoto-
Sivashinsky’'s equation by the BDK method. Far Bafiyn. Sys. 2011;15(2):83-98.

Bogning JR, Kofane TC. Analytical Solutions of diste nonlinear Schrédinger equation in arrays of
optical fibers. Chaos, Solitons & Fractals. 2006488153.

Bogning JR. Pulse soliton Solutions of the modifiedlv and Born- Infeld equations. International
Journal of Modern Nonlinear Theory and Applicatiop813;2:135-140.

Khan K, Akbar AM, Harun-Or-Roshid. Exact travelingave solutions of nonlinear evolution

equation via enhanced3 / G)-expansion method. British Journal of Mathemetiosl Computer
Science. 2014;4(10):1318-1334.

Khan K, Akbar AM. Application of exp zp(f)) - expansion method to find the exact solutions of

modified Benjamin-Bona-Mahony equation. World Appli Sciences Journal. 2013;24(10):
1373-1377.

Da-Junzhang, et al. Reviews in Mathematical phyaiésrld Scientific Publishing Company. 2014;
2b:1430006.

Kaup DJ, Lakoba TI. Variational method: How it cgenerate false instabilities. Journal of
Mathematical Physics. 1996;37:3442-3462.

Bogning JR, Djeumen Tchaho CT, Kofané TC. Solitargve solutions of the modified Sasa-

Satsuma nonlinear partial differential equation. ekican Journal of Computational and Applied
Mathematics. 2013;3(2):97-107.

11



Bogning et al.; BJIMCS, 13(3): 1-12, 2016; Article.BIMCS.10620

(18]

(19]

[20]
(21]

[22]

(23]

(24]

Bogning JR. Analytical soliton Solutions and wawdusions of discrete Nonlinear Cubic-quintique
Ginzburg-Landau equations in array of dissipativptioal systems. American Journal of
Computational and Applied Mathematics. 2013;3(2)195.

Hirota R. Exact N-soliton solution of nonlinearfsglial network equations. J. Math. Phys. 1973;14:
805-809.

Wadati M. Wave propagation in nonlinear latticell.Phys. Soc. JPn. 1975;38:673-680.
Wadati M. Wave propagation in nonlinear latticeJllPhys. Soc. JPn. 1975;38:681-686.

Yajima T, Wadati M. Solution and its property ofstable nonlinear Schrédinger equation. J. Phys.
Soc. JPn. 1990;59:41-47.

Shuging Li, Lu Li, Zhonghao Li, Guosheng Zhou. Red@s of soliton solutions on the cw
background in optical fibers with higher-order effe J. Opt. Soc. Am. B. 2004;21(12):2089-2094.

Nakkeeran K. Bright and dark optical solitons ibefi media with higher-order effects. Chaos
Solitons & Fractals. 2002;13:673-679.

© 2016 Bogning et al.; This is an Open Access lrtitistributed under the terms of the Creative CamsnAttribution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be aceg$ere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/12567

12



