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Abstract 
 

We construct in this manuscript, the combined solitary wave solutions of nonlinear Schrödinger equation 
that governs the dynamics of propagation of waves in optical fibers with higher-order effects. We base 
our survey on the sum of two analytic shapes of the solitary waves of bright and dark type to form a 
resulting solitary wave to determine. 

 

Keywords: Combined solitary wave; BDKm; higher order effects optical fibers; nonlinear Schrödinger 
equations. 

 

1 Introduction  
 
The physical systems are generally governed by the partial differential equations that are in most cases 
nonlinear. When these partial differential equations are linear, they obey the principles of superposition and 
especially of the uniqueness of the solution. When these partial differential equations are nonlinear, the 
principle of linear combination of the solutions is not applicable and the approach in the resolution varies 
according to the type of equation and especially of the type of solutions that one wants to obtain. Thus, it 
becomes difficult to speak of standard method of resolution or unique solution. It is exactly for this reason 
that the multiple methods and different approaches developed by many authors exist [1-16] with the aim of 
solving the considered equation completely or to find the approached solutions with a minimal error margin. 
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Beyond all these methods of integration of the nonlinear partial differential equations, the research of the 
forced solutions occupies an important place. To adapt and to exploit the natural phenomena which surround 
us in order to improve our daily work. Among the searched solutions, the solitary wave probably occupies a 
very important place because of its futuristic applications. This fact is translated in many articles written by 
many researchers [17-22]. In this dynamics, we construct some solitary wave solutions of the nonlinear 
partial differential equation that govern the propagation of waves in the higher nonlinear effects optical 
fibers and govern by the equation [23,24]. 
 

( ) ( )2 2 2

1 2 3 4 5 0z tt ttt
t t

U i U i U U U U U U Uα α α α α− − − − − = ,    (1) 

 

where U is the slowly varying envelope of the electric field, the subscripts z and t  denote the spatial and 

temporal partial derivatives, and 1α , 2α , 3α , 4α  and 5α  are real constants related to the group-velocity 

dispersion, the self-phase modulation, the third-order dispersion, the self-steepening, and the delayed 
nonlinear response effect, respectively. The solutions that we construct effectively are of type combined 
solitary wave; that means resulting from a combination of the bright solitary wave and dark solitary wave. 
Otherwise to say the solutions that we want to construct are of the shapes 
 

( ) ( )
( ) ( )

,

sinh
, exp

cosh

j

lj lj l
l j

t
U z t a i kz t

t

α
ω

α
= − −  ∑ ,                                                       (2) 

 

where lja , α  are constants,  k  the spatial frequency of the wave and ω  the angular frequency of the wave 

to be determined as a function of the parameters ( )1,2,...,5χα χ = of eq.(1), 1,2,...l = ; 0,1j =  and 

2 1i = − . If we define for example from eq. (2), two solutions as 
 

( ) ( )
( )
( ) ( )1

sinh
, exp

cosh cosh

ta
U z t b i kz t

t t

α
ω

α α
 

= + − −     
 

,                                         (3) 

 
and 
 

( ) ( )
( )
( ) ( )2 2 2

sinh
, exp

cosh cosh

tc
U z t d i kz t

t t

α
ω

α α
 

= + − −     
 

,                                         (4) 

 

where the constants a , b , c  and d  are to be determined, we see that 1U
 

is constituted by 

( )( ) ( )11 / cosh expU a t i kz tα ω= − −    which is a bright solitary wave and 

( ) ( )( ) ( )12 sinh / cosh expU b t t i kz tα α ω= − −    which is a dark solitary wave. On the other hand 

2U  is constituted by ( )( ) ( )2
21 / cosh expU c t i kz tα ω= − −    which is a bright solitary wave and 

( ) ( )( ) ( )2
22 sinh / cosh expU d t t i kz tα α ω= − −    which is a dark solitary wave.  
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Fig. 1. Curves of 11U , 12U , 21U and 22U   as a function of time; (a): The red curve indicates the 

profile of 11U  for 5a =  and 1α = ;  the green curve the profile of 12U  for 5b =  and 1α = ;  

(b): The red curve indicates the profile of 21U  for 5c =  and 1α = ;  the green curve gives the 

profile of 22U  for 5d =  and 1α =  

 

 
 

Fig. 2.  Curves of 1U  and 2U   as a function of time; (a): The red curve indicates the profile of 1U  

for 6a = , 2b =  and 1α = ;  the green curve the profile of 1U  for 2a = , 6b =  and 1α = ;  

(b): The red curve indicates the profile of 2U  for 6c = , 2d =  and 1α = ;  the green curve gives 

the profile of 1U  for 2c = , 6d =  and 1α =  

 
The curves of the Fig. 1 show the profiles of single solitary waves and the curves of the Fig. 2 show the 
profiles of the combined solitary waves. In the two cases the red curves indicate the bright solitary waves 
and the green curves indicate the dark solitary waves. 
 

(a) (b) 

(a) (b) 
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Thus, the combined solutions 1U  and 2U  can be bright or dark type according to the choice of the 

coefficientsa , b , cand d . Whena bf , 1U is a bright soliton. It becomes a dark soliton whena bp . 

For 2U , we have the same findings depending on c df  or c dp . The above diagrams illustrate these 

different analyses. So in a general manner when we have a resultant solitary wave formed of an association 
of two solitary waves of type pulse and kink, the profile of the solitary wave obtained is either the one of a 
pulse or a dark. All depends on the choice of the values of parameters. In some cases the obtained profiles 
can stretch toward a bright or toward a dark without take the complete shape of the bright or the dark. In the 
setting of this survey, what interests us is the case where the resultant solitary wave is formed of an 
association of a pulse and a kink and why? Because the sum of the solitary waves of the same nature gives a 
resultant solitary wave of this considered nature. These types of solutions as we want to look for can have 
numerous applications in physics. It is besides this principle of analysis that motivates the construction of the 
solutions as we propose in this work. We organize the manuscript in the following manner:  
 

Before constructing some solutions under the shape proposed in eq. (2), we look for in section 2 of the 

possible solutions of the shape ( ) ( )( ) ( )sinh / cosh expm na t t i kz tα α ω− −   . In section 3, we 

construct the solutions of the type given by eq. (3). Section 4, proposes the solutions of the type given 
by eq. (4). Finally, section 5 concludes the work. 

 

2 Method of Resolution 
 
The principle consist of searching globally for the solutions of eq. (1) in the form 
 

( )( ) ( )( )
,

sinh / cosh
j i

ij
i j

v a x xα α=∑ ,                                                                                    (5) 

 

where 0,1,...i = ; 0,1,...j = ; α  and ija  are the coefficients to determine. When we introduce the ansatz 

(5) in eq. (1) we obtain with the help of adequate transformations [7,8], an equation of the form 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
, , , ,

, , , , ,

/ cosh sinh / cosh

cosh cosh sinh 0

n m
ij ij

i j n i j m

k l
ij ij ij

i j k i j l i j

F a x G a x x

H a x T a x x W a

α α α

α α α

+

+ + + =

∑ ∑

∑ ∑ ∑
.    (6) 

 

( )ijF a , ( )ijG a , ( )ijH a , ( )ijT a  and ( )ijW a  are linear functions of the coefficients ija . From eq. (6), 

we obtain the series of equations of constants ija to solve. Notably the equations such as follows [7,8]: 

 

Term in ( )1/ coshn xα , 

 

( )
,

0ij
i j

F a =∑ ,                                                                                                                               (7) 

 

Term in ( ) ( )sinh / coshmx xα α , 

 

( )
,

0ij
i j

G a =∑ ,                                                                                                                               (8) 
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Term in ( )coshk xα , 

 

( )
,

0ij
i j

H a =∑ ,                                                                                                                              (9) 

 

Term in ( ) ( )cosh sinhl x xα α , 

 

( )
,

0ij
i j

T a =∑ ,                                                                                                                              (10) 

 

Term in ( )( ) ( )( )0 0
sinh / coshx xα α , 

 

( )
,

0ij
i j

W a =∑ .                                                                                                                            (11) 

 

Finally, the resolution of the above eqs. (7), …, (11) permits to obtain the constants .ija   

 

3 Results and Discussion 
 
3.1 Pulse or Kink Solitary Wave Solution 
 
In this section we look for the single solitary waves that are the solutions of the eq.(1). Thus, we suppose that  
 

( ) ( )
( ) ( )sinh

, exp
cosh

m

n

t
U z t a i kz t

t

α
ω

α
= − −   ,                                                                    (12) 

 
is the solution of eq. (1) where a , α  and k  are constants to be determined, n  and mare the whole 

numbers to be determined and 2 1i = − . The ansatz (12) can represent the analytic shape of the solitary 
wave of type pulse or kink according to the choice of the parameters n  and m. For example 0m =  and 

0n ≠ , we have a solitary wave of type pulse. For 1m =  and 0n ≠ , we have a solitary wave of type kink. 
Then inserting eq. (12) in eq. (1) yields 
 

( ) ( )
( ),

sinh
, , , , 0

cosh

m

nm n
n m

t
F a k n m

t

α
α

α
=∑ ,                                                                                    (13) 

 

where ( ), , , ,nmF a k n mα are the function of the constants a , k , α , n  and m. The non trivial solutions 

are only gotten for 0m =  and 1m = . Thus, the coefficients of the terms in ( )31/ cosh tα , 

( )1/ cosh tα , ( ) ( )4sinh / cosht tα α  and ( ) ( )2sinh / cosht tα α  give respectively 

 

( ) ( ) 22
3 1 2 42 2 0aα ωα α α ωα− − + = ,                                                                    (14) 
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( )2 2 2 2
1 3 31 2 0i k α ω α α ωα α ω − + + − − =  ,                                                                    (15) 

 

( ) 2

3 4 56 3 2 0aα α α α+ + = ,                                                                                                    (16) 

 
and 
 

( )2 2 2
1 32 2 1 0α ω αω ω α α+ + + =                                                                                           (17) 

 
The resolution of eq. (14) and eq. (16) gives 
 

( )3 2 3 4

3 4 3 5 1 4 1 5

6

6 4 6 4

α α ωα α
α

ωα α ωα α α α α α
− +

=
− − −

,                                                                    (18) 

 
and 
 

( )2
2 3 1

2 4

2 2
a

α ωα α
α ωα

−
=

+
,                                                                                                            (19) 

 

with 3 4 3 5 1 4 1 56 4 6 4 0ωα α ωα α α α α α− − − ≠  and 2 4 0α ωα+ ≠ . On the other hand eq. (15) gives 

 

( )2 2 2 2
1 3 31 2k iα ω α α ωα α ω= + − + ,                                                                                  (20) 

 
where α is given by eq. (18). Similarly eq. (17) is written  
 

( )3 2 2 2
3 1 32 2 0α α α ω α ω α α+ − + = .                                                                                     (21) 

 

In the case where the condition ( )2 2 3 2
1 3 32 0α α α α α α− + ≥  is verified, we obtain from eq. (21) 

 

( )2 2 3 2
1 1 3 3

3 2
3

2

2

α α α α α α α
ω

α α α
± − +

=
+

.                                                                                     (22) 

 
Taking into account the eqs. (18), (19), (20) and (22) in eq. (12), we obtain the solution 
 

( ) ( ) ( ) ( )23 1
3

2 4

2 2
, sec exp expU z t h t z i z t

ωα αα α α ω ω
α ωα

−= ± − Ω −  +
,          (23) 

 

with ( )2 2 2
1 31 2α ω α α ωαΩ = + −  such that α  and ω  are given respectively by eq. (18) and eq. (22). 
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3.2 Solitary Wave which Results from the Combination of the Solitary Waves of First 
Order  
 

The substitution of eq. (3) in eq. (1) leads to 
 

( ) ( )( ) ( )
( ),

sinh
, , 0, 1,2,...,5; 0,1

cosh

p

qp qp q
q p

t
H a b iG a b q p

t

α
α

+ = = =∑                              (24) 

 

where ( ),qpH a b  and ( ),qpG a b  are the functions of a  and b , 2 1i = − . From eq.(24), we obtain the 

series of equations of constants a  and b  
 

( )
,

, 0qp
q p

H a b =∑ ,                                                                                                                      (25) 

 
and 
 

( )
,

, 0qp
q p

G a b =∑ .                                                                                                                        (26) 

 
Some particular solutions of a  and b can be obtain by summing eq. (25) and eq. (26). Then eq. (25) and    
eq. (26) lead to 
 

( ) ( )( )
,

, , 0qp qp
q p

H a b G a b+ =∑ .                                                                                              (27) 

 
Thus, from eq. (27), we have 
 

Term in ( )41/ cosh tα , 

 

( ) ( )2 2
5 4 5 4 29 3 3 0a b abα α α α α α α+ − + + = ,                                                                  (28) 

 

Term in ( )31/ cosh tα , 

 

( )
2

2 2
3 1

2

2b a
α α ω α
α

− = − + ,                                                                                                   (29) 

 

Term in ( )21/ cosh tα , 

 

( ) ( )2 2 2
4 2 1 22 6 3 2 2 0b a aα α α ω α ω α α− − + − = ,                                                              (30) 

 

Term in ( )1/ cosh tα , 

 

( ) ( )2 3 2 2 2 2 2
5 2 3 1 14 2 3 0a b b ab a k aα α α ω α ωα α ω α α− − + − + − − = .                        (31) 
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Another equations which derive from the term in sinh / coshlt tα α , 1,2,...,5l =  can allow to establish the 
constraint relations between the parameters of the physics system governs by eq. (1). Combining eq. (29) 
and eq. (30), we obtain 
 

( )2 2 3 2
2 4 2 4 2 2 14 2 2 3 2 0a aα α α α α α α α ω α ω α+ + + + = .                                       (32) 

 
Equation (32) is a quadratic equation in a . It resolution gives 
 

2
2

2 44
a

α
α α

′− ± ∆= ,                                                                                                               (33) 

 

with ( )4 2 2 2 2
2 2 4 4 2 1 24 2 3 2α α α α α α α ω α α ω′∆ = − + +  such that 0′∆ ≥ . Inserting eq. (33) in eq. (29), 

we obtain 
 

( ) ( )
2

2 2
2 2 4 3 1

2 4

1
16 2

4
b α α α α ω α

α α
 ′= ± − ± ∆ − +
  

.                                                    (34) 

 
Taking into account eq. (33) and eq. (34) into eq. (3), we obtain 
 

( )
( )

( ) ( ) ( )
( )

2
2

2 4

1
2

2 2
2 2 4 3 1

2 4

sec
4

, exp .
1

16 2 tanh
4

h t

U z t i kz t

t

α α
α α

ω
α α α α ω α α

α α

  ′− ± ∆
   
  = − −   

  ′± − ± ∆ − +
           

(35) 

 
3.3 Solitary Solution Wave which Results from the Combination of the Solitary 

Waves of Second Order   
 
Substituting ansatz (4) in eq. (1), we obtain the range equation 
 

( ) ( )
( ) ( ) ( )

( ), ,

sinh sinh
, , , , , , , , 0

cosh cosh

t t
R a b k i T a b k

t t

γ γ

µγ µγµ µ
µ γ µ γ

α α
α ω α ω

α α
+ =∑ ∑ ,                    (36) 

 

where ( ), , , ,R a b kµγ α ω  and ( ), , , ,T a b kµγ α ω  are functions of constants to determine;2 1i = − . 

 
The real part and the imaginary part of eq. (36) lead to the set of equations according to the Bogning-
Djeumen Tchaho-Kofané method (BDKm) [7,8]  
 

( ),
,

, , , , 0R a b kµ γ
µ γ

α ω =∑ ,                                                                                                         (37) 

 
and 
 

( )
,

, , , , 0T a b kµγ
µ γ

α ω =∑ .                                                                                                           (38) 
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The combination of eq. (37) and eq. (38) which derive from the same terms in ( )1/ cosh , 1,...,7tµ α µ =   

leads to the following equations: 
 

Term in ( )71/ cosh tα , 

 

( )( )2 3
4 54 0c d dα α α− + = ,                                                                                                   (39) 

 

Term in ( )61/ cosh tα , 

 

( ) ( )2 2 2
4 5 28 3 0c d c c dα α α α+ + − = ,                                                                                  (40) 

 

Term in ( )51/ cosh tα , 

 

( ) ( )2 2 2
4 5 4 4 5 12 2 3 12 0c dα αα α αα αα α α+ − + + + = , (41) 

 

Term in ( )41/ cosh tα , 

 

( )2 2 2 2 2
4 5 1 2 32 6 3 6 0c d c d c cα α α α α α α α ω+ − + + = , (42) 

 

Term in ( )31/ cosh tα , 

 

( ) ( )3 2 3
1 3 4 54 20 6 2 0d d d dα αω α α αω α α α− − + + = , (43) 

 

Term in ( )1/ cosh tα , 

 

( )3 2
1 3 2 0d dα ωα α α αω− − + = .                                                                                           (44) 

 

The resolution of eq. (39) supposes three possibilities. The case where ( )2 2 0d c d− =  and 4 5 0α α+ = , 

the case where ( )2 2 0d c d− =  and 4 5 0α α+ ≠  and the case where ( )2 2 0d c d− ≠  and 

4 5 0α α+ = .  It is important to mention that we are looking for the non trivial solutions of eq. (1); so a  

and b must be different from zero and only the case 0d ≠ , c d≠  and 4 5 0α α+ =  permits to obtain the 

non trivial solutions. Thus, taking into account eq. (39) into eq. (40) yields 
 

2 23c d= .                                                                                                                                       (45) 
 
Introducing eq. (45) in eq. (41) gives 
 

2
2 1

4 4 5

12

4 3
d

α α
αα α αα

=
− −

,                                                                                                          (46) 
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and 
 

2
2 1

4 4 5

36

4 3
c

α α
αα α αα

=
− −

,                                                                                                           (47) 

 

with 4 4 54 3 0αα α αα− − ≠ . Taking into account eq. (46) and eq. (47) into eq. (48) and eq. (49) allows to 

obtain α  as a function of ( )1, 2,...,5i iα = and consequently the relation which can help to determine ω  

as a function of ia such as 

 

( )
( )( )

2

3 3 4 1 4 1

22
1 3 1 4 1 5 3 4 3 4

20 24 24 108

4 6 6 18 6 18 .

α α α ω α α α

α ω α ω α α α α α α ω α α ω

− −

= + − − +
  (48) 

 
Introducing the obtained expressions of α  and ω  in equations eq. (37) and eq. (38), we obtain the 

expression of k  as a function of iα . Then taking into account eq. (39) and eq. (40) in eq. (4), we obtain 

 

( )
( )

( )
( )

21

4 4 5

2

21

4 4 5

6 sec
4 3

, exp
12

sinh sec
4 3

h t

U z t i kz t

t h t

αα α
αα α αα

ω
αα α α

αα α αα

 
± − − = − −   
 ±
 − − 

.   (49) 

 

4 Conclusion 

 
The aim of this work was to construct some forced solitary wave solutions. For this reason we carried our 
choice on the combined solitary wave solutions that means a solitary wave that result from the association of 
a solitary wave of type pulse and kink. That is a solitary wave which can take according to the choice of the 
parameters, a shape pulse or kink. In the setting of BDKm used in this work, when one has several equations 
of the constants, one limits itself to the resolution of the equations of the first range susceptible to produce 
the solutions that come closer to best of the exact solution. In case of the solution given by the eq. (46), we 
concentrated our analysis to the range of equations in 1/ cosh tµ α  with 1,2,...,7µ = . What spur our interest 
in the construction of such solutions is that these solutions could have important applications in physics or in 
engineering of telecommunication. The survey made in this manuscript can be spread to the cases where the 
resultant solitary wave solution is an association of three solitary waves, four and more. 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Fan E. Extended tanh-function method and its applications to nonlinear equations. Physics Letter A. 

2000;277:212-218. 
 

[2] Parkes EJ, Duffy BR. An automated tanh-function method for finding solitary wave solutions to 
nonlinear evolution equations. Comput. Phys. Commun. 1996;98:288-300. 



 
 
 

Bogning et al.; BJMCS, 13(3): 1-12, 2016; Article no.BJMCS.10620 
 
 
 

11 
 
 

[3] Khater AH, Malfiet W, Callebaut DK, Kamel ES. The tanh method, a simple transformation and 
exact analytical solutions for nonlinear reaction-diffusion equations. Chaos, Solitons & Fractals. 
2002;14:513-522. 

 
[4] Kaup DJ, Lakoba TI. Variational method: How it can generate false instabilities. J. Math. Phys. 1996; 

37(7):3442-3462. 
 
[5] Wazwaz AM. The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. 

Comput.  2002;133:213-227. 
 
[6] Wazwaz AM. A computational approach to soliton solutions of the Kadomtsev- Petviashvili equation. 

Appl. Math. Comput. 2001;123:205-217. 
 
[7] Bogning JR, Djeumen Tchaho CT, Kofané TC. Construction of the soliton solutions of the Ginzburg-

Landau equations by the new Bogning-Djeumen Tchaho-Kofané method. Phys. Scr. 2012;85:  
025013-025018. 

 
[8] Bogning JR, Djeumen Tchaho CT, Kofané TC. Generalization of the Bogning-Djeumen Tchaho-

Kofané method for the construction of the solitary waves and the survey of the instabilities. Far East 
J. Dyn. Sys. 2012;20(2):101-119. 

 
[9] Djeumen Tchaho CT, Bogning JR, Kofané TC. Modulated Soliton solution of the modified 

Kuramoto-Sivashinsky’s equation. American Journal of Computational and Applied Mathematics.   
2012;2(5):218-224. 

 
[10] Djeumen Tchaho CT, Bogning JR, Kofane TC. Multi-Soliton solutions of the modified Kuramoto-

Sivashinsky’s equation by the BDK method. Far East J. Dyn. Sys. 2011;15(2):83-98. 
 
[11] Bogning JR, Kofane TC. Analytical Solutions of discrete nonlinear Schrödinger equation in arrays of 

optical fibers. Chaos, Solitons & Fractals. 2006;28:48-153. 
 
[12] Bogning JR. Pulse soliton Solutions of the modified KdV and Born- Infeld equations. International 

Journal of Modern Nonlinear Theory and Applications. 2013;2:135-140. 
 
[13] Khan K, Akbar AM, Harun-Or-Roshid. Exact traveling wave solutions of nonlinear evolution 

equation via enhanced ( /G G′ )-expansion method. British Journal of Mathemetics and Computer 
Science. 2014;4(10):1318-1334. 

 

[14] Khan K, Akbar AM. Application of exp ( ( )φ ξ ) - expansion method to find the exact solutions of 

modified Benjamin-Bona-Mahony equation. World Applied Sciences Journal. 2013;24(10):            
1373– 1377. 

 
[15] Da-Junzhang, et al. Reviews in Mathematical physics. World Scientific Publishing Company. 2014; 

2b:1430006. 
 
[16] Kaup DJ, Lakoba TI. Variational method: How it can generate false instabilities. Journal of 

Mathematical Physics. 1996;37:3442-3462. 
 
[17] Bogning JR, Djeumen Tchaho CT, Kofané TC. Solitary wave solutions of the modified Sasa- 

Satsuma nonlinear partial differential equation. American Journal of Computational and Applied 
Mathematics. 2013;3(2):97-107. 

 



 
 
 

Bogning et al.; BJMCS, 13(3): 1-12, 2016; Article no.BJMCS.10620 
 
 
 

12 
 
 

[18] Bogning JR. Analytical soliton Solutions and wave solutions of discrete Nonlinear Cubic-quintique 
Ginzburg-Landau equations in array of dissipative optical systems. American Journal of 
Computational and Applied Mathematics. 2013;3(2):97-105. 

 
[19] Hirota R. Exact N-soliton solution of nonlinear self-dual network equations. J. Math. Phys. 1973;14: 

805-809. 
 
[20] Wadati M. Wave propagation in nonlinear lattice I.  J. Phys. Soc.  JPn. 1975;38:673-680. 
 
[21] Wadati M. Wave propagation in nonlinear lattice II. J. Phys. Soc. JPn. 1975;38:681-686. 
 
[22] Yajima T, Wadati M. Solution and its property of unstable nonlinear Schrödinger equation. J. Phys. 

Soc. JPn. 1990;59:41-47. 
 
[23] Shuqing Li, Lu Li, Zhonghao Li, Guosheng Zhou. Properties of soliton solutions on the cw 

background in optical fibers with higher-order effects. J. Opt. Soc. Am. B. 2004;21(12):2089-2094. 
 
[24] Nakkeeran K. Bright and dark optical solitons in fiber media with higher-order effects. Chaos 

Solitons & Fractals. 2002;13:673-679. 
_______________________________________________________________________________________ 
© 2016 Bogning et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://sciencedomain.org/review-history/12567 


