
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgsi20

An adaptive Markov chain algorithm applied over
map-matching of vehicle trip GPS data

Bilge Kaan Karamete, Louai Adhami & Eli Glaser

To cite this article: Bilge Kaan Karamete, Louai Adhami & Eli Glaser (2021) An adaptive Markov
chain algorithm applied over map-matching of vehicle trip GPS data, Geo-spatial Information
Science, 24:3, 484-497, DOI: 10.1080/10095020.2020.1866956

To link to this article:  https://doi.org/10.1080/10095020.2020.1866956

© 2021 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 02 Feb 2021.

Submit your article to this journal 

Article views: 1874

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/loi/tgsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2020.1866956
https://doi.org/10.1080/10095020.2020.1866956
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2020.1866956
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2020.1866956
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1866956&domain=pdf&date_stamp=2021-02-02
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1866956&domain=pdf&date_stamp=2021-02-02


An adaptive Markov chain algorithm applied over map-matching of vehicle 
trip GPS data
Bilge Kaan Karamete, Louai Adhami and Eli Glaser

Engineering, Geospatial, Kinetica DB Inc, Arlington, VA, USA

ABSTRACT
Markov chains have frequently been applied to match the probable routes with a set of GPS 
trip data that a pilot vehicle is emitting over a specific graph road network. This class of map- 
matching (MM) algorithms presently demonstrates and involve statistical and ad-hoc measures 
to drive the Markov chain transitional probabilities in picking the best route combinations 
constrained over the graph road network. In this study, we have devised an adaptive scheme to 
modify the Markov Chain (MC) kernel window as we move along the GPS samples to reduce the 
mistakes that can happen by the use of narrower MC widths. The measure for temporarily 
increasing the MC window width is chosen to be the ratio between the geodesic distance of 
current route to the actual geodesic distance between each pair of GPS samples. This adaptive 
use of MC has shown to have hardened the results significantly with tolerable computational 
cost increase. The details of the overall algorithm are depicted by the example routes extracted 
from various vehicle trips and the results are shown to validate the usefulness of the algorithm 
in practice.
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1. Introduction

The basic goal of a generic purpose map-matching 
algorithm is to find out the matching road segment 
(s) to a set of GPS data emitted from a traveling vehicle 
within some error of accuracy. There are many essen-
tial factors affecting GPS accuracy; the government 
provides the GPS signal in space with a global average 
User Range Rate error (URRE) of � 0:006 m/s over 
any 3 second interval, with 95% probability. This 
measure must be combined with other factors outside 
the government’s control, including satellite geometry, 
signal blockage, atmospheric conditions, and receiver 
design features/quality, to calculate a particular recei-
ver’s speed accuracy (US-Government 2020). Even 
though it is impossible to eliminate these measure-
ment errors, a brute force approach of increasing the 
GPS sampling frequency is often used to minimize the 
cumulative errors at the expense of higher data accu-
mulation and processing. The map-matching (MM) 
task is finding the most reasonable route correspond-
ing to a number of GPS data samples under the 
assumption that the data has some unavoidable level 
of noise associated with it.

The road networks are generally conceptualized as 
unstructured topology composed of directed node- 
edge graphs GfV;Eg where every junction is modeled 
by a node V and each street by a road segment edge E 
emanating from V as its edges. The number of edges 
per node could be different and even though the road 
network graph is usually not modified often, the traffic 

conditions and loads mutate significantly during the 
course of daily traffic. Less frequently, new road seg-
ments to the graph could be added, deleted, or direc-
tions changed for restricted access. Therefore, a 
dynamic data structure for graph topology is required 
to model the road networks where there can be 
expanding or shrinking number of edges per node 
(Karamete et al. 2016; Boeing 2017; Xin et al. 2013). 
The cost (impedance) per edge is modeled as either the 
geodesic distance or as the time it takes between the 
two end vertices of the edge. If the speed (traffic 
allowed) is known at the road segment, the cost 
value can be calculated from the distance divided by 
the speed and associated with the edge. Various graph 
solvers make use of this scalar cost field to solve for the 
most optimal routing such as shortest path single 
routing (Dijkstra), multiple routing (traveling sales-
man), back-haul routing, map-matching, etc. 
(Kinetica 2020) (See Figure 1).

The main idea of MM in converging to a reasonable 
trip path is to minimize the error of propagation from 
one GPS point to the next while associating them to the 
supposed road segments. During this process, if an algo-
rithmic error is made in associating a GPS sample to a 
wrong road segment, its propagation to the next sample 
point is unavoidable and the entire matching process 
results in an erroneous route selection. Hence, it is 
crucial to include a range of GPS samples in a broader 
sense instead of focusing on single sample points. The 
human perception is very apt to make more or less the 
“correct” routing decisions by looking at a broader 
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section of GPS samples than just a few. In other words, 
we are good at processing the visual information by 
looking ahead and corrections are almost instantly 
made among all possible paths around the sample points. 
Similarly, the inference mechanism of our minds in 
matching road segments to the GPS samples is uncon-
sciously computing in a predictive-corrective manner by 
looking at a range of data to extract the most likely route 
as the shortest possible one by snapping GPS points to 
the nearest road segments. If these are the criteria of our 
innate inferencing process, then there are certainly the 
constraints of finding the shortest possible route and 
nearest road segments. In fact, there are many possibi-
lities emerge when we consider the fuzzy (noise) aspect 
of the GPS data that the nearest snap location may 
not be the most “correct” road segment (Newson and 
Krumm 2009; Quddus, Ochieng, and Noland 2007). We 
can certainly find the best answer from the set of possible 
snap locations but we need to process possible path 
formations within a window of a number of GPS sam-
ples. In other words, we can not make a prediction for 
the “current” location without observing the GPS sam-
ples up ahead (future GPS point states).

The number of consecutive possibilities between 
each pair of GPS samples in a corrective manner 
should also take into account the constraints of the 
road network, i.e., some segments are only-one-way 
restricted, and the route can not include segments 
jumping off to another segment if there is no graph 
connections. There are also the constraints of plausi-
bility, i.e., each sample has a time-stamp (bread- 
crumbs) and the trip sequencing should obey this 
ascending order for coherence (Newson and Krumm 
2009; Goh et al. 2012). Moreover, there could be speed 
limits imposed over certain road segments and the trip 
path should not contradict the travelled distance, cal-
culated between the speed limit and the timestamps of 
the GPS samples under the assumption that the vehi-
cle actually obeys the traffic laws and regulations 
which is a reasonable assumption to make (except 
perhaps in Maryland and New Jersey). In light of 
these observations, a number of criteria for deducing 

the most likely route from the GPS samples can be 
stated as follows:

● Each GPS point should be snapping to one of its 
nearest road segments.

● The route should result in shortest paths among 
snapped locations calculated based on the 
weights (time or distance) of the road segments 
(Chen et al. 2014).

● The temporal order of the GPS points should be 
preserved in the routing.

● The route is constrained by the road network 
graph topology (connections).

● The route should obey the directed-ness of the 
segments, i.e., the edge directions of its graph 
topology.

● The travelled distance of the path should not 
contradict the speed limit of the road segments 
and cumulative timestamps.

To this end, above points are studied by various map- 
matching approaches devised from simple snapping to 
the nearest segments to the weighted averages of more 
sophisticated metrics brakat, (Brakatsoulas et al. 2005; 
White, Bernstein, and Kornhauser 2000). Most of 
these geometrical ideas often result in non-uniform 
level of success due to their reliance on sampling 
frequency and GPS accuracy. A relatively more suc-
cessful strategy by (Brakatsoulas et al. 2005) used 
Fréchets distance between the curved approximation 
of the trace of the GPS samples to the road segments. 
Another approach was using the predicates that 
include sample heading and distance to the road 
angle and have a similarity measure leading to build-
ing of a topological measure where road constraints 
were also applied (Greenfeld 2002). These local tech-
niques showed good results when sampling frequency 
and accuracy were adequate, however, they were also 
found to be inferior for lower sampling frequency 
cases. This was not a surprising finding as fewer 
noisy data is expected to result in poor routing 
matches. Lately, a rigorous comparative study is per-
formed by Wei demonstrating various weight func-
tions devised in the literature and their success rates 
using a Viterbi dynamic programming algorithm (Wei 
et al. 2012).

The procedure to solve this optimization problem 
should take into account the state of the GPS points in a 
range, i.e., if we are to figure out the projection of a GPS 
point onto a prospective set of segments at time tn, the 
decision should not contradict for the next set of 
GPS points at tnþk where k is the range or the width 
of the window that we “look ahead” to correct the 
predicted snap location at the current tn station 
under the criteria and constraints listed above. The 
best-solving strategy for this kind of optimization 
problem is the application of Hidden Markov 

Figure 1. A typical road graph network – unstructured number 
of edges emanating from each node. Courtesy to HERE com-
pany – The graph of DC metropolitan area.
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Chains (HMC) concept where at each GPS station 
there is a probability computed from the transitional 
probabilities of the þ k (“ahead”) states of the GPS 
points; in other words, the current state probability 
depends on the future possibilities.

This is how the MC is generally formulated for an 
MM problem (Newson and Krumm 2009): the hidden 
state is the likelihood (probability) of a GPS point to 
be snapped on a prospective edge segment. In other 
words, the probability of a point to be snapped over a 
prospective edge segment is hidden by the probabil-
ities of the next set of GPS samples. These transitional 
probabilities could be modeled either as to how close 
the GPS point to a possible set of nearby edges or the 
cumulative cost of traveling from one prospective 
location to the next or both. To this end, there have 
been many MM algorithms tried in the literature using 
different approaches from totally topological to geo-
metric and probabilistic and summarized by the sur-
vey paper of (Quddus, Ochieng, and Noland 2007).

The map-matching work of (Newson and Krumm 
2009) utilizing Markov chains, exercised the geodesic 
distance between the consecutive GPS samples, zi and 
ziþ1 as being the base factor in determining the transi-
tional probabilities in the HMC kernel. The deviation 
between this base distance and the route distance from 
road segment projections, ri to rj is defined as the raw 
transitional probability among all prospective snap pro-
jection combinations and depicted as tij in Equations 1(a- 
c). The distance error is then cast into an exponential 

probability distribution function shown in Equation 1(d) 
with β being an ad-hoc error coefficient, prior to the 
HMC kernel iterations depicted as k in Equations 1(e-f). 
The parameter definitions of Equation (1) are also illu-
strated in Figure 2. It is also worth noting the number of 
prospective snap locations (maximum of three, as yet 
another parameter) is only found within a preset radius 
of the R-tree (Guttman 1984) per GPS sample shown 
with the dotted circles in Figure 2. They have also noted 
that there can still be problems particularly for the noisy 
data near intersections even though HMC kernel super-
iorly predicts the ground truth with greater accuracy and 
not sensitive to the sampling frequency. 

pi ¼ PðzijriÞ (1a) 

tij : pi 7! pj (1b) 

tij ¼ zi � zj
�
�

�
�

geodesic � ri � rj
�
�

�
�

�
�
�

�
�
� (1c) 

ti;j  ð1=βÞe� tij=β (1d) 

pkþ1
i ¼ tij � pk

j (1e) 

pkþ1
i ¼ tk

ij � p
0
j (1f) 

Our algorithm borrows the main idea from Newson and 
Krumm but makes a major contribution in detecting the 
problem areas and adaptively applying wider HMC 

Figure 2. (a) A portion of GPS samples along a graph road network. (b) a sub-section of the samples where two consecutive GPS sample 
pairs and their respective parameters used in Equation (2), is shown. The parameters ri and rj are one of the three (1 � 3) prospective snap 
locations for GPS samples zi and zj, respectively, found within the search radius of the R-tree shown with the dotted circles.
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kernel widths where necessary to fix the remaining issues. 
The kernel width is then reset back to the shorter span for 
efficiency. The other major differentiating factor is that 
our process finds the total cost of the overall kernel 
sequence based on the aggregated sum of the mini 
Dijkstra runs within each pair of a sequence. Road 
weights are modified based on the relative distance of 
prospective snap locations of the road segments to the 
GPS points, so that the shortest path runs respect where 
all possible snaps would occur. Road constraints are 
applied as filters on the combination sequence genera-
tions before running mini-dijkstras on the probable 
paths. The overall algorithm is explained in the next 
Section 2, followed by its application on user test cases 
with varying sample frequencies and trip durations in 
Section 3.

2. Algorithm

The input to the MM algorithm is a set of time-stamped 
lon-lat pairs of GPS data and a road network graph. The 
road network graph GðV;EÞ is generated enclosing the 
entire set of GPS samples and a range tree (R-Tree) is 
constructed from the line segments of the edges of the 
graph (Guttman 1984). A set of closest edge segments is 
then searched and cached for each GPS sample using the 
R-Tree. The number of prospective edges per GPS sam-
ple is a parameter of the algorithm and a default value of 

up-to three distinct edge segments is used within a search 
radius of 10 times the graph tolerance – the graph toler-
ance is usually chosen to be between 1 � 10 mwith a 
corresponding lon-lat angle tolerance of roughly 
10� 5 � 10� 4, respectively. The GPS samples are option-
ally filtered to remove noisy data due to redundant 
recordings at stop signs and intersections. A Gaussian 
filter of 5 m radius is used to filter out the noisy data. This 
rough filtering helps reducing the computational work-
load in some cases by 20% � 30%.

The algorithmic steps will be explained by the 
help of a small road graph segment with five GPS 
samples in its vicinity as shown in Figure 3. There 
is a number of potential prospective snap locations, 
e.g., at sample station 4, the GPS point could be 
projected to segment locations 7; 8; 9. These prob-
able paths moving from one (n) time-stamp to the 
next (nþ 1) can be conceptualized easily via gen-
erating a network transition diagram as depicted on 
the right side of Figure 3. The flow of transitioning 
from a possible snap location of a GPS sample 
point to the next sample’s possible projection loca-
tions can easily be followed using this diagram. The 
constraints are shown as red crosses; e.g., the path 
from segment 8 to segment 10 going from station 4 
to station 5 should not be allowed since there are 
no graph connections possible between these pro-
spective locations.

Figure 3. (a) Physical diagram for the road map and GPS samples; blue dots from 1 � 5 are GPS sample points. Black lines are the 
actual road network graph segments and the possible snap locations for each GPS point are also depicted as black from 1 � 10; e. 
g., GPS sample 4 has three possible nearest segment projections, depicted as 7; 8; 9. (b) Conceptual network transition diagram 
across GPS sample stations shown in vertical lines. At each GPS sample location, there is a number of potential prospective snap 
locations; e.g., at sample 4, the GPS point could be projected to segment locations 7; 8; 9. The constraints are shown as red crosses; 
e.g., the path from 8 to 10 should not be allowed since there is no graph connections possible between the two.
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There is a number of combinatorial sequences 
emerging based on all the possibilities of snap 
locations at each GPS station. The task of finding 
the probability value of a specific pair (probability 
of a state) depends on the transitioning probabil-
ities within the pairs in the sequence. The number 
of digits in a sequence equals to the width of the 
GPS sample stations in HMC; e.g., there are five 
digits of the sequence of the case depicted in Figure 
3. Mathematically speaking, these probabilities are 
lumped as a sequence and each sequence has a cost 
value based on the sum of the shortest path runs 
aggregated over each pair (See Figure 4). However, 
shortest path favors the minimum accumulated 
weight of the edges in the path, and not necessarily 
those that the GPS points are projected. Hence, the 
weights are modified proportionally for the nearest 
segments to the GPS points so that the Dijkstra 
algorithm implicitly embeds the snapping possibi-
lities and solves for the minimum aggregated sum 
of the shortest path costs between each pair of the 
sequence. The modified weights are then reset to 
their original values when the whole width is 
shifted by one station to the next batch of width 
range. The entire algorithm is depicted in the 
pseudo-code form in Figure 5. This main algorithm 
is divided into four sections, namely, adapting the 
width, solving the HMC kernel, sequencing and 
applying filters and finally detecting the errors for 

readapting the width before sliding the kernel by 
one station to the next range as shown in Figure 6.

2.1. Solving mini-dijkstras

A Dijkstra shortest path solver is implemented to run 
between each pairs of a sequence (Dijkstra 1959). The 
efficiency in the minimal way of storage and proces-
sing speed is very crucial in the overall performance of 
the MM algorithm, as these mini solves would be 
running thousands of times during the course of the 
algorithm execution. The start and end locations could 
be snapping over the same graph edge in which case, 
the dijkstra cost optimizer would reduce to the arith-
metic operations of finding the proportional weights 
based on the projection locations along the edge. In 
fact, there are quite a number of possibilities of how the 
cost is calculated based on the projection locations of 
the pair’s start and end locations, as shown in Figure 7. 
The weight w is adjusted as (w�) based on the snap 
location l away from v0 and s is also chosen based on 
the snap ratio R as the start graph node for the cost 
optimization solver as computed by Equation (2). The 
weights on the prospective snap segments are modified 
to make sure that the cost optimization solver would 
have a proportional and ensured bias on the close 
segments to the GPS points. MM routing cases are 
found to be not particularly sensitive to the weight 
modification heuristics. For the cases tested within 

Figure 4. Finding the minimum cost sequence; (a) the possible sequences in five-digit combinatorials of snap locations numbered 
consecutively across GPS samples. The sequence generation algorithm prunes the possibilities based on the topological 
connections; number 2 at the first station transitioning to the number 3 at the second station is not allowed and filtered from 
the sequence as depicted with the crosses. (b) three probable path sequences. (c) the cumulative cost of mini-dijkstra runs 
aggregated between the pairs of each sequences; minimum cost sequence is 1 � 3 � 5 � 7 � 10 with the cost of 8:5.
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our work, we have found out that one tenth of the 
original weights is adequate in forcing the solves to 
follow the GPS samples. Another crucial observation 
is that the Markov characteristics of the algorithm seem 

to be relaxing the sensitivity on the ad-hoc nature of the 
weight factor selection schemes. 

R ¼ l=L 

Figure 5. Main Hidden Markov chain algorithm.

Figure 6. Sliding the kernel by one station.
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s ¼ v0; R � 0:5
v1; otherwise

�

w� ¼ R � w; R � 0:5
ð1 � RÞ � w; otherwise

�

(2) 

In general, the Dijkstra Condition (DC) on each vertex 
vi can be specified by Equation (3) which states that 
the cost di can not be greater than the minimum of the 
cost of any incoming vertices connected to vi via the 
edge’s weight wij. The DC condition is satisfied in a 
breadth first search manner by the Dijkstra-D kernel 
originated from the source (start) node and termi-
nated at the destination (end) node. We opt for 
using a priority queue implementation for the 
Dijkstra solver (Felner 2011) which seems to super-
sede parallel implementations (Wang et al. 2017) in 
speed due to its small sub-graph size between the start 
and the end nodes; in MM case, pairwise GPS time- 
stamps are at most 200 m away, i.e., only a few hun-
dred edges needed for traversals at the most. 

di ¼ ðdj þ wijÞjwij : vj 7!vi;2 NðviÞ

Dstart;end ¼ min
vi2GðV;EÞjend

start

ðdiÞ (3) 

2.2. Sequencing

The essential juxtapose of the algorithm pivots around 
the ability of generating the sequences under the topolo-
gical constraints of the road network. The latter is applied 
as filters in the sequence generation engine. The filtered 
pairs are identified by the failure of the cost optimization 
solver. The sequences are generated after the exhaustive 
solver cycle so that the filtered pairs could be applied 
simply as constraints on the combinatorial number 
sequence generation scheme (See Figure 4). The cost 

between each pair of indices found by the solver in 
each sequence is aggregated and the total cost is paired 
with the sequence number as depicted in Equation (4). 
The optimization problem is then reduced to picking the 
minimum total cost sequence among all probable 
sequences. When the minimum cost sequence is picked 
as shown in the example as the second sequence with the 
cost of C2 ¼ 8:50, only the first point in the sequence is 
set for the sure-match and the kernel is shifted to the 
right (next time-stamp station), thereby the decision for 
the current sample’s snap location (state) is always made 
based on the probability states of the GPS sample stations 
in the next range whose width is not constant. So, the 
sequence s2 is picked and the first GPS sample location in 
the sequence is fixed at the snap location corresponding 
to the index f1g as depicted in Equations (4) and (5). 

costk : Ck ¼
Xwidth� 1

i¼0
Di;iþ1
�
�

�
�

( )

k 

s0 ¼ 2; 4; 6; 9; 11f g : C0 ¼ 10:5 

s1 ¼ 2; 4; 6; 8; 11f g : C1 ¼ 12:5 

s2¼ 1; 3; 5; 7; 10f g : C2¼ 8:50 (4) 

argminðsk;CkÞ7! s2;C2f g (5) 

2.3. Adapting width

The decision of adapting the MC window width is 
based on the ratio between the geodesic distance of 
the route (snaps) to the actual geodesic distance of the 
GPS points (samples) similar to the probability density 
function of Newson and Krumm (2009). However, 
instead of the difference depicted in Equation (1c), 
we have used the ratio of the distances to detect the 
errors in the map-matching process. The need for 
increasing the kernel width can easily be noticed in 
the mid section of a typical example case shown in 
Figure 8 as the ratio of the geodesic distances exceeds 
an ad-hoc threshold limit of ten ð�10Þ. Basically, the 
kernel’s width was not wide enough to include the 
future history that would anticipate favoring on a 
more logical (sensical) map-matching. Hence the 
redundant looping around the intersection is avoided 
with the help of including more points inside the MC 
kernel as seen in Figure 9 (10 points versus 5 points). 
The adaptation scheme of doubling the width has a 
maximal ceiling of 14 points and will not re-try once 
this ceiling is reached as the number of probable 
sequences quickly becomes formidable to enumerate 
and solve.

The adaptive selection of the width in the MC 
kernel has shown to have hardened the results tremen-
dously with tolerable computational cost increase 

Figure 7. Projection of a GPS point GPSi on a prospective edge e.
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since the feedback loop depicted in the main algorithm 
illustrated in Figure 5 reverts back onto the original 
and narrower width of MM right after running the 
wider kernel scenario. From the computational experi-
ments, it could also be speculated that the likelihood of 
making an erroneous decision with a narrower span is 
not uncommon particularly for the cases where the 
sampling frequency is not adequate and/or more valid 
sequences exist.

Another example for the adaptive kernel solving the 
wrong path selection issue due to the erroneous GPS 
samples (latitude shift) can also be seen in Figure 10, 

where the result of our adaptive scheme is compared 
against the fixed width algorithms (Newson and 
Krumm 2009; Brakatsoulas et al. 2005; Felner 2011; 
Greenfeld 2002). Adaptively switching the width twice 
more than the nominal value helped including the 
“key” GPS samples whose projection snaps are over 
the correct graph road segment. The automatic switch 
from fixed width to adaptive width is detected by 
computing the ratio between the geodesic and the 
route distances within any consecutive pairs of GPS 
samples during the “Slide Kernel Feedback” step of the 
main algorithm depicted in Figure 5.

Figure 8. Map-matching result using the fixed width MC kernel of five GPS points across; cost optimization mistakenly chooses the 
route with a redundant loop in the middle of the trip routing. Red dots are the actual GPS points.

Figure 9. Map-matching result using the adaptive width MC kernels that changes; the error is detected since the ratio between the 
geodesic distance of current route to the actual geodesic distance between the pair of GPS samples is more than the defect 
threshold. The MM is fixed adaptively using a wider width of 10 points.
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3. Results and discussion

We have used thousands of sets of GPS trip data, 
emitted from the test vehicles across the continental 
US to verify and harden the results of our algorithm. 
In fact, the remedying idea of adapting the Markov 
chain width directly came from analyzing these valu-
able sets of data and seeing where the problem areas 
arise. The observed cases where we have noticed a 
potential adaptation needed can be itemized as 
follows:

● Approaching to the forking road segments where 
GPS samples are actually closer to the wrong 
section of the fork is resolved to a “correct” path 
only by “looking ahead” toward the next set of 
points (See Figure 11, Figure 12, Figure 14).

● The noise in the GPS data is making many choices 
viable and only having a cumulative score of com-
binatorial path optimization leads to a reasonably 
“correct” path. (See Figure 15).

● The upper and lower passes of the road network 
where the z-level changes may have overlapping 
two dimensional (Lon,Lat) coordinates and hence 
graph edges built without hashing on z-level 
values, can be connected from lower to upper 
sections. The resolution may both need to have 
the graph to be z-aware and also use wider markov 

chains in map-matching. (See Figure 10, Figure 11, 
Figure 14).

● The round-about sections require a wider ker-
nel widths to identity the paths correctly. (See 
Figure 13).

All of the above observations show the need for a 
Markov Chain type optimization to be employed and 
also reflects the need to change the kernel width adap-
tively to resolve the paths correctly.

The sequences generated via Markov chains uses 
many mini-Dijkstra runs as explained in the Subsection 
2.2 above. However, if the GPS points are too far away 
from each other, particularly the case for the inability to 
emit the data inside tunnels, etc., the Dijkstra runs should 
be allowed to cover more than the distance between the 
two GPS end points. In order to minimize the computa-
tional load, however, if the Dijkstra runs can not reach the 
“end” node from the “start” within a user set limit, e.g., 
within 10 hops, then the sequence is deemed to be not 
valid, and skipped by leaving gaps in the matched route 
(See Figure 11).

There are also rare scenarios due to numerical instabil-
ity induced by the modifications of the edge weights 
proportional to the proximity of the graph edges to the 
GPS samples, that can result in sequences that might have 
redundant back and forth traveling over the same edge. 
These are referred as folding vertex paths and should be 

Figure 10. The comparison of our adaptive kernel width algorithm vs fixed width conventional map-matching algorithms. Black 
dots denote the input GPS samples that are erroneous due to a random latitude shift. The fixed width algorithms result in dark 
gray path, with redundant loops indicative of “faulty” map match. The adaptive switch of the kernel width twice more than the 
fixed width enabled HMC algorithm to include the “key” GPS samples to change the overall route to a more correct alternative as 
depicted by the cyan path.
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filtered out before finding the minimum cost sequence 
depicted by Equation (4). Filtering out these paths 
requires additional computational time, and even though 
the individual check is not expensive, the need to repeat 
the check for shifting kernels can not be amortized easily. 
Hence, filtering is made optional, as a typical trade-off 
between accuracy and speed. The additional time is pro-
portional to the kernel width, the total number of GPS 
points, as well as the number of prospective snap edges 
per GPS point found by the R-Tree search. It can vary 

from low 1%� 2 % to almost as high as 30 % for the rare 
cases of 10þ hour-long trip durations with 2� 5 seconds 
GPS frequencies. For example, the folding vertex paths, 
such as the sequence as, f2; 2; 2; 2; 2; 2; 3; 3; 4; 4; 4; 3; 5;
5; 6; 7; 7g, can easily be identified due to its redundant 
f . . . 3; 4; 4; 4; 3 . . .g fold pattern.

An ad-hoc matching score per trip is computed to 
understand how well the mapped route is matching with 
the underlying GPS points as depicted in Figure 16. The 
GPS points are snapped back onto the map-matched 

Figure 12. Result of map-matching; the trip data is provided by Ford motor company. Red dots depict the GPS sample points 
emitted from the vehicle – continuous blue line is the result of the map-matched route.

Figure 11. Result of map-matching over the Seattle data set courtesy of Microsoft (Newson and Krumm 2009).
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route and the distance difference between the GPS loca-
tion to its closest snap location is aggregated over the 
whole set and divided by the total number of GPS sample 
points. In lieu of the ground truth data which is unfortu-
nately not available for our tests, this heuristic measure at 
least gives a notion for an error of the match similar to 
mean squared residuals over the entire data set. Almost 
all good matches demonstrate a match score well within 
1 � 5 m (1 m � 10� 5 in degrees). Any match score 
higher than this threshold range indicates that either the 
samples are highly noisy and/or the order in the GPS 
timestamps are erroneous.

Finally, the performance of our algorithm can be said 
to be dependent on a number of parameters; total num-
ber of GPS points, the input parameter of initial Markov 
Chain width (the adaptive kernel never goes below this 

preset value), the number of closest edges per GPS point 
found by the R-Tree. This latter parameter and the chain 
width directly impacts the total number of combinatorial 
sequences and consequently the number of mini-dijkstra 
runs. Our algorithm allows users to trade accuracy versus 
speed. However, it is rare that we have seen a map- 
matching process taking more than a few seconds on 
modern laptops (2–3 GHz intel i7 processors). Another 
limiting parameter we have instrumented is the cap 
on the number of combinatorial sequences generated, 
currently, at 10; 000 that gets generated within each ker-
nel shift that is usually never violated with the common 
widths of 6� 9 points and 3� 4 closest number of edges 
per GPS sample.

The testing results shown in Figure 16 are tabulated 
on Table 1, including 140K GPS samples of 77 trips 

Figure 14. Result of map-matching; the trip data is provided by Ford motor company. Map-matching correctly determines the 
“correct” path at forking intersections with blue line as matched route and red dots as raw GPS points.

Figure 13. Result of map-matching; the trip data is provided by Ford motor company. The matched route shown in blue most 
likely depicts a person’s dropping kids off at the school grounds and returning back making turns around the multiple round- 
abouts.

494 B. K. KARAMETE ET AL.



with varying frequencies computed over a graph of 
475K edges, and a maximum of 3 closest snaps per 
GPS sample within a search radius of 10 m. The table 
lists mean and maximal errors found in these trips for 
various base widths to compare the fixed width algo-
rithms against our adaptive method. Mean squared 
residuals over all trips are tabulated over the “AvgErr” 

column and the maximum error found in any trip 
depicted as the “MaxErr” column, respectively. One 
major noteworthy remark on these results is that there 
appears to be one trip case that has a wrong map match 
causing over hundred meter error and none of the fixed 
widths up-to 14 points could address the trip’s map 
successfully (within an admissible error bound). 
However, the fixed HMC width of 14 takes almost 
exponentially large run time increase compared to the 
lower widths, that makes the entire map-matching pro-
cess computationally prohibitive. The solution is the use 
of our adaptive algorithm and as depicted over Table 1, 
even the use of only 5 (five) points adaptively was 
seemingly able to switch to the necessary width where 
necessary to resolve the erroneous path matching issue. 
The optimal choice seems to be the use of base width of 

Figure 16. Result of map-matching; the trip data is provided by Ford motor company. The picture shows the map-matching routes 
for 77 trips around seattle area. The red line specifically depicts a user picked trip with an id of 418257229 and a match score of 
� 1:2 � 10� 5.

Figure 15. Noise in the GPS samples is quite visible by the void red circles zoomed in on a portion of the Microsoft’s Seattle data 
set. The Map-matching algorithm finds the best route by screening possible path sequences under the constraints of the graph 
road network topology.

Table 1. Adaptive versus fixed width results.
Width (base) Method Time/s AvgErr/m MaxErr/m

Fixed 5.23 11.6 152.7
5 Adapt 9.54 1.9 5.5

Fixed 17 6.8 152.7
8 Adapt 25 1.1 1.3
10 Fixed 53.7 2.9 152.7
14 Fixed 453.6 0.9 1.3
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8 adaptively to suppress both the maximal and average 
errors. Both 8 and 5 point adaptive results show orders 
of magnitude speed gains compared to the fixed width 
conventional HMC algorithms.

Though the entire algorithm depicted in Figure 5 is 
not particularly suitable for parallelization, we have par-
allelized the batch runs of many trips as well as registering 
the mini-dijkstra runs within each solver. On one test 
batch consisted of more than 300K sample points belong-
ing to 370 individual trips of varying degrees of sampling 
frequencies between 0:5 seconds and 5 seconds, we were 
able to obtain results in less than 24 seconds using 8 cores 
where 95 percent of the trips had match scores well below 
1 m over a graph of approximately 7 million edges. 
Though these results are satisfactory in practice and the 
algorithm has been adopted by our industry partner car 
company, parallel batch runs can not be proven to pro-
vide linear at-scale performances. One of the reasons of 
bottlenecking the overall scalability is due to the “heavier” 
sets of trips with more GPS samples that might also 
require more adaptive cycles. In the future, we are plan-
ning to improve the scalability of the algorithm by 
addressing parallelism within each individual module in 
the core algorithm depicted in Figure 5. Finally, the novel 
idea of using the adaptive Markov kernel width proposed 
as the main contribution of our paper could easily be 
adopted and plugged into the existing map-matching 
algorithms to improve the general accuracy of the results.

It is also worth mentioning about the nature of the 
software in this algorithmic work, that is entirely imple-
mented from scratch using C++, and without the use of 
any third-party libraries. The I/O to the map-matching 
algorithm is provided from the in-memory database of 
Kinetica, a GPU streaming data warehouse and using its 
propriety C++ APIs. The map-matching is itself a yet 
another Kinetica API, and available in RESTFUL/C+ 
+/Java/R/Python API formats. The novel idea of using 
an adaptive Markov chain width in addressing map- 
matching problems is also granted a provisional US 
Patent recently (EFSID: 38,512,015, App No: 62,970,845).
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