
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgsi20

An adaptive Markov chain algorithm applied over
map-matching of vehicle trip GPS data

Bilge Kaan Karamete, Louai Adhami & Eli Glaser

To cite this article: Bilge Kaan Karamete, Louai Adhami & Eli Glaser (2021) An adaptive Markov
chain algorithm applied over map-matching of vehicle trip GPS data, Geo-spatial Information
Science, 24:3, 484-497, DOI: 10.1080/10095020.2020.1866956

To link to this article: https://doi.org/10.1080/10095020.2020.1866956

© 2021 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 02 Feb 2021.

Submit your article to this journal

Article views: 1874

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/loi/tgsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2020.1866956
https://doi.org/10.1080/10095020.2020.1866956
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2020.1866956
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2020.1866956
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1866956&domain=pdf&date_stamp=2021-02-02
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1866956&domain=pdf&date_stamp=2021-02-02

An adaptive Markov chain algorithm applied over map-matching of vehicle
trip GPS data
Bilge Kaan Karamete, Louai Adhami and Eli Glaser

Engineering, Geospatial, Kinetica DB Inc, Arlington, VA, USA

ABSTRACT
Markov chains have frequently been applied to match the probable routes with a set of GPS
trip data that a pilot vehicle is emitting over a specific graph road network. This class of map-
matching (MM) algorithms presently demonstrates and involve statistical and ad-hoc measures
to drive the Markov chain transitional probabilities in picking the best route combinations
constrained over the graph road network. In this study, we have devised an adaptive scheme to
modify the Markov Chain (MC) kernel window as we move along the GPS samples to reduce the
mistakes that can happen by the use of narrower MC widths. The measure for temporarily
increasing the MC window width is chosen to be the ratio between the geodesic distance of
current route to the actual geodesic distance between each pair of GPS samples. This adaptive
use of MC has shown to have hardened the results significantly with tolerable computational
cost increase. The details of the overall algorithm are depicted by the example routes extracted
from various vehicle trips and the results are shown to validate the usefulness of the algorithm
in practice.

ARTICLE HISTORY
Received 27 April 2020
Accepted 14 December 2020

KEYWORDS
Hidden Markov chain (HMC);
map-matching (MM); graph
networks

1. Introduction

The basic goal of a generic purpose map-matching
algorithm is to find out the matching road segment
(s) to a set of GPS data emitted from a traveling vehicle
within some error of accuracy. There are many essen-
tial factors affecting GPS accuracy; the government
provides the GPS signal in space with a global average
User Range Rate error (URRE) of � 0:006 m/s over
any 3 second interval, with 95% probability. This
measure must be combined with other factors outside
the government’s control, including satellite geometry,
signal blockage, atmospheric conditions, and receiver
design features/quality, to calculate a particular recei-
ver’s speed accuracy (US-Government 2020). Even
though it is impossible to eliminate these measure-
ment errors, a brute force approach of increasing the
GPS sampling frequency is often used to minimize the
cumulative errors at the expense of higher data accu-
mulation and processing. The map-matching (MM)
task is finding the most reasonable route correspond-
ing to a number of GPS data samples under the
assumption that the data has some unavoidable level
of noise associated with it.

The road networks are generally conceptualized as
unstructured topology composed of directed node-
edge graphs GfV;Eg where every junction is modeled
by a node V and each street by a road segment edge E
emanating from V as its edges. The number of edges
per node could be different and even though the road
network graph is usually not modified often, the traffic

conditions and loads mutate significantly during the
course of daily traffic. Less frequently, new road seg-
ments to the graph could be added, deleted, or direc-
tions changed for restricted access. Therefore, a
dynamic data structure for graph topology is required
to model the road networks where there can be
expanding or shrinking number of edges per node
(Karamete et al. 2016; Boeing 2017; Xin et al. 2013).
The cost (impedance) per edge is modeled as either the
geodesic distance or as the time it takes between the
two end vertices of the edge. If the speed (traffic
allowed) is known at the road segment, the cost
value can be calculated from the distance divided by
the speed and associated with the edge. Various graph
solvers make use of this scalar cost field to solve for the
most optimal routing such as shortest path single
routing (Dijkstra), multiple routing (traveling sales-
man), back-haul routing, map-matching, etc.
(Kinetica 2020) (See Figure 1).

The main idea of MM in converging to a reasonable
trip path is to minimize the error of propagation from
one GPS point to the next while associating them to the
supposed road segments. During this process, if an algo-
rithmic error is made in associating a GPS sample to a
wrong road segment, its propagation to the next sample
point is unavoidable and the entire matching process
results in an erroneous route selection. Hence, it is
crucial to include a range of GPS samples in a broader
sense instead of focusing on single sample points. The
human perception is very apt to make more or less the
“correct” routing decisions by looking at a broader

CONTACT Bilge Kaan Karamete kallespapaz@gmail.com

GEO-SPATIAL INFORMATION SCIENCE
2021, VOL. 24, NO. 3, 484–497
https://doi.org/10.1080/10095020.2020.1866956

© 2021 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1866956&domain=pdf&date_stamp=2021-09-23

section of GPS samples than just a few. In other words,
we are good at processing the visual information by
looking ahead and corrections are almost instantly
made among all possible paths around the sample points.
Similarly, the inference mechanism of our minds in
matching road segments to the GPS samples is uncon-
sciously computing in a predictive-corrective manner by
looking at a range of data to extract the most likely route
as the shortest possible one by snapping GPS points to
the nearest road segments. If these are the criteria of our
innate inferencing process, then there are certainly the
constraints of finding the shortest possible route and
nearest road segments. In fact, there are many possibi-
lities emerge when we consider the fuzzy (noise) aspect
of the GPS data that the nearest snap location may
not be the most “correct” road segment (Newson and
Krumm 2009; Quddus, Ochieng, and Noland 2007). We
can certainly find the best answer from the set of possible
snap locations but we need to process possible path
formations within a window of a number of GPS sam-
ples. In other words, we can not make a prediction for
the “current” location without observing the GPS sam-
ples up ahead (future GPS point states).

The number of consecutive possibilities between
each pair of GPS samples in a corrective manner
should also take into account the constraints of the
road network, i.e., some segments are only-one-way
restricted, and the route can not include segments
jumping off to another segment if there is no graph
connections. There are also the constraints of plausi-
bility, i.e., each sample has a time-stamp (bread-
crumbs) and the trip sequencing should obey this
ascending order for coherence (Newson and Krumm
2009; Goh et al. 2012). Moreover, there could be speed
limits imposed over certain road segments and the trip
path should not contradict the travelled distance, cal-
culated between the speed limit and the timestamps of
the GPS samples under the assumption that the vehi-
cle actually obeys the traffic laws and regulations
which is a reasonable assumption to make (except
perhaps in Maryland and New Jersey). In light of
these observations, a number of criteria for deducing

the most likely route from the GPS samples can be
stated as follows:

● Each GPS point should be snapping to one of its
nearest road segments.

● The route should result in shortest paths among
snapped locations calculated based on the
weights (time or distance) of the road segments
(Chen et al. 2014).

● The temporal order of the GPS points should be
preserved in the routing.

● The route is constrained by the road network
graph topology (connections).

● The route should obey the directed-ness of the
segments, i.e., the edge directions of its graph
topology.

● The travelled distance of the path should not
contradict the speed limit of the road segments
and cumulative timestamps.

To this end, above points are studied by various map-
matching approaches devised from simple snapping to
the nearest segments to the weighted averages of more
sophisticated metrics brakat, (Brakatsoulas et al. 2005;
White, Bernstein, and Kornhauser 2000). Most of
these geometrical ideas often result in non-uniform
level of success due to their reliance on sampling
frequency and GPS accuracy. A relatively more suc-
cessful strategy by (Brakatsoulas et al. 2005) used
Fréchets distance between the curved approximation
of the trace of the GPS samples to the road segments.
Another approach was using the predicates that
include sample heading and distance to the road
angle and have a similarity measure leading to build-
ing of a topological measure where road constraints
were also applied (Greenfeld 2002). These local tech-
niques showed good results when sampling frequency
and accuracy were adequate, however, they were also
found to be inferior for lower sampling frequency
cases. This was not a surprising finding as fewer
noisy data is expected to result in poor routing
matches. Lately, a rigorous comparative study is per-
formed by Wei demonstrating various weight func-
tions devised in the literature and their success rates
using a Viterbi dynamic programming algorithm (Wei
et al. 2012).

The procedure to solve this optimization problem
should take into account the state of the GPS points in a
range, i.e., if we are to figure out the projection of a GPS
point onto a prospective set of segments at time tn, the
decision should not contradict for the next set of
GPS points at tnþk where k is the range or the width
of the window that we “look ahead” to correct the
predicted snap location at the current tn station
under the criteria and constraints listed above. The
best-solving strategy for this kind of optimization
problem is the application of Hidden Markov

Figure 1. A typical road graph network – unstructured number
of edges emanating from each node. Courtesy to HERE com-
pany – The graph of DC metropolitan area.

GEO-SPATIAL INFORMATION SCIENCE 485

Chains (HMC) concept where at each GPS station
there is a probability computed from the transitional
probabilities of the þ k (“ahead”) states of the GPS
points; in other words, the current state probability
depends on the future possibilities.

This is how the MC is generally formulated for an
MM problem (Newson and Krumm 2009): the hidden
state is the likelihood (probability) of a GPS point to
be snapped on a prospective edge segment. In other
words, the probability of a point to be snapped over a
prospective edge segment is hidden by the probabil-
ities of the next set of GPS samples. These transitional
probabilities could be modeled either as to how close
the GPS point to a possible set of nearby edges or the
cumulative cost of traveling from one prospective
location to the next or both. To this end, there have
been many MM algorithms tried in the literature using
different approaches from totally topological to geo-
metric and probabilistic and summarized by the sur-
vey paper of (Quddus, Ochieng, and Noland 2007).

The map-matching work of (Newson and Krumm
2009) utilizing Markov chains, exercised the geodesic
distance between the consecutive GPS samples, zi and
ziþ1 as being the base factor in determining the transi-
tional probabilities in the HMC kernel. The deviation
between this base distance and the route distance from
road segment projections, ri to rj is defined as the raw
transitional probability among all prospective snap pro-
jection combinations and depicted as tij in Equations 1(a-
c). The distance error is then cast into an exponential

probability distribution function shown in Equation 1(d)
with β being an ad-hoc error coefficient, prior to the
HMC kernel iterations depicted as k in Equations 1(e-f).
The parameter definitions of Equation (1) are also illu-
strated in Figure 2. It is also worth noting the number of
prospective snap locations (maximum of three, as yet
another parameter) is only found within a preset radius
of the R-tree (Guttman 1984) per GPS sample shown
with the dotted circles in Figure 2. They have also noted
that there can still be problems particularly for the noisy
data near intersections even though HMC kernel super-
iorly predicts the ground truth with greater accuracy and
not sensitive to the sampling frequency.

pi ¼ PðzijriÞ (1a)

tij : pi 7! pj (1b)

tij ¼ zi � zj
�
�

�
�

geodesic � ri � rj
�
�

�
�

�
�
�

�
�
� (1c)

ti;j ð1=βÞe� tij=β (1d)

pkþ1
i ¼ tij � pk

j (1e)

pkþ1
i ¼ tk

ij � p
0
j (1f)

Our algorithm borrows the main idea from Newson and
Krumm but makes a major contribution in detecting the
problem areas and adaptively applying wider HMC

Figure 2. (a) A portion of GPS samples along a graph road network. (b) a sub-section of the samples where two consecutive GPS sample
pairs and their respective parameters used in Equation (2), is shown. The parameters ri and rj are one of the three (1 � 3) prospective snap
locations for GPS samples zi and zj, respectively, found within the search radius of the R-tree shown with the dotted circles.

486 B. K. KARAMETE ET AL.

kernel widths where necessary to fix the remaining issues.
The kernel width is then reset back to the shorter span for
efficiency. The other major differentiating factor is that
our process finds the total cost of the overall kernel
sequence based on the aggregated sum of the mini
Dijkstra runs within each pair of a sequence. Road
weights are modified based on the relative distance of
prospective snap locations of the road segments to the
GPS points, so that the shortest path runs respect where
all possible snaps would occur. Road constraints are
applied as filters on the combination sequence genera-
tions before running mini-dijkstras on the probable
paths. The overall algorithm is explained in the next
Section 2, followed by its application on user test cases
with varying sample frequencies and trip durations in
Section 3.

2. Algorithm

The input to the MM algorithm is a set of time-stamped
lon-lat pairs of GPS data and a road network graph. The
road network graph GðV;EÞ is generated enclosing the
entire set of GPS samples and a range tree (R-Tree) is
constructed from the line segments of the edges of the
graph (Guttman 1984). A set of closest edge segments is
then searched and cached for each GPS sample using the
R-Tree. The number of prospective edges per GPS sam-
ple is a parameter of the algorithm and a default value of

up-to three distinct edge segments is used within a search
radius of 10 times the graph tolerance – the graph toler-
ance is usually chosen to be between 1 � 10 mwith a
corresponding lon-lat angle tolerance of roughly
10� 5 � 10� 4, respectively. The GPS samples are option-
ally filtered to remove noisy data due to redundant
recordings at stop signs and intersections. A Gaussian
filter of 5 m radius is used to filter out the noisy data. This
rough filtering helps reducing the computational work-
load in some cases by 20% � 30%.

The algorithmic steps will be explained by the
help of a small road graph segment with five GPS
samples in its vicinity as shown in Figure 3. There
is a number of potential prospective snap locations,
e.g., at sample station 4, the GPS point could be
projected to segment locations 7; 8; 9. These prob-
able paths moving from one (n) time-stamp to the
next (nþ 1) can be conceptualized easily via gen-
erating a network transition diagram as depicted on
the right side of Figure 3. The flow of transitioning
from a possible snap location of a GPS sample
point to the next sample’s possible projection loca-
tions can easily be followed using this diagram. The
constraints are shown as red crosses; e.g., the path
from segment 8 to segment 10 going from station 4
to station 5 should not be allowed since there are
no graph connections possible between these pro-
spective locations.

Figure 3. (a) Physical diagram for the road map and GPS samples; blue dots from 1 � 5 are GPS sample points. Black lines are the
actual road network graph segments and the possible snap locations for each GPS point are also depicted as black from 1 � 10; e.
g., GPS sample 4 has three possible nearest segment projections, depicted as 7; 8; 9. (b) Conceptual network transition diagram
across GPS sample stations shown in vertical lines. At each GPS sample location, there is a number of potential prospective snap
locations; e.g., at sample 4, the GPS point could be projected to segment locations 7; 8; 9. The constraints are shown as red crosses;
e.g., the path from 8 to 10 should not be allowed since there is no graph connections possible between the two.

GEO-SPATIAL INFORMATION SCIENCE 487

There is a number of combinatorial sequences
emerging based on all the possibilities of snap
locations at each GPS station. The task of finding
the probability value of a specific pair (probability
of a state) depends on the transitioning probabil-
ities within the pairs in the sequence. The number
of digits in a sequence equals to the width of the
GPS sample stations in HMC; e.g., there are five
digits of the sequence of the case depicted in Figure
3. Mathematically speaking, these probabilities are
lumped as a sequence and each sequence has a cost
value based on the sum of the shortest path runs
aggregated over each pair (See Figure 4). However,
shortest path favors the minimum accumulated
weight of the edges in the path, and not necessarily
those that the GPS points are projected. Hence, the
weights are modified proportionally for the nearest
segments to the GPS points so that the Dijkstra
algorithm implicitly embeds the snapping possibi-
lities and solves for the minimum aggregated sum
of the shortest path costs between each pair of the
sequence. The modified weights are then reset to
their original values when the whole width is
shifted by one station to the next batch of width
range. The entire algorithm is depicted in the
pseudo-code form in Figure 5. This main algorithm
is divided into four sections, namely, adapting the
width, solving the HMC kernel, sequencing and
applying filters and finally detecting the errors for

readapting the width before sliding the kernel by
one station to the next range as shown in Figure 6.

2.1. Solving mini-dijkstras

A Dijkstra shortest path solver is implemented to run
between each pairs of a sequence (Dijkstra 1959). The
efficiency in the minimal way of storage and proces-
sing speed is very crucial in the overall performance of
the MM algorithm, as these mini solves would be
running thousands of times during the course of the
algorithm execution. The start and end locations could
be snapping over the same graph edge in which case,
the dijkstra cost optimizer would reduce to the arith-
metic operations of finding the proportional weights
based on the projection locations along the edge. In
fact, there are quite a number of possibilities of how the
cost is calculated based on the projection locations of
the pair’s start and end locations, as shown in Figure 7.
The weight w is adjusted as (w�) based on the snap
location l away from v0 and s is also chosen based on
the snap ratio R as the start graph node for the cost
optimization solver as computed by Equation (2). The
weights on the prospective snap segments are modified
to make sure that the cost optimization solver would
have a proportional and ensured bias on the close
segments to the GPS points. MM routing cases are
found to be not particularly sensitive to the weight
modification heuristics. For the cases tested within

Figure 4. Finding the minimum cost sequence; (a) the possible sequences in five-digit combinatorials of snap locations numbered
consecutively across GPS samples. The sequence generation algorithm prunes the possibilities based on the topological
connections; number 2 at the first station transitioning to the number 3 at the second station is not allowed and filtered from
the sequence as depicted with the crosses. (b) three probable path sequences. (c) the cumulative cost of mini-dijkstra runs
aggregated between the pairs of each sequences; minimum cost sequence is 1 � 3 � 5 � 7 � 10 with the cost of 8:5.

488 B. K. KARAMETE ET AL.

our work, we have found out that one tenth of the
original weights is adequate in forcing the solves to
follow the GPS samples. Another crucial observation
is that the Markov characteristics of the algorithm seem

to be relaxing the sensitivity on the ad-hoc nature of the
weight factor selection schemes.

R ¼ l=L

Figure 5. Main Hidden Markov chain algorithm.

Figure 6. Sliding the kernel by one station.

GEO-SPATIAL INFORMATION SCIENCE 489

s ¼ v0; R � 0:5
v1; otherwise

�

w� ¼ R � w; R � 0:5
ð1 � RÞ � w; otherwise

�

(2)

In general, the Dijkstra Condition (DC) on each vertex
vi can be specified by Equation (3) which states that
the cost di can not be greater than the minimum of the
cost of any incoming vertices connected to vi via the
edge’s weight wij. The DC condition is satisfied in a
breadth first search manner by the Dijkstra-D kernel
originated from the source (start) node and termi-
nated at the destination (end) node. We opt for
using a priority queue implementation for the
Dijkstra solver (Felner 2011) which seems to super-
sede parallel implementations (Wang et al. 2017) in
speed due to its small sub-graph size between the start
and the end nodes; in MM case, pairwise GPS time-
stamps are at most 200 m away, i.e., only a few hun-
dred edges needed for traversals at the most.

di ¼ ðdj þ wijÞjwij : vj 7!vi;2 NðviÞ

Dstart;end ¼ min
vi2GðV;EÞjend

start

ðdiÞ (3)

2.2. Sequencing

The essential juxtapose of the algorithm pivots around
the ability of generating the sequences under the topolo-
gical constraints of the road network. The latter is applied
as filters in the sequence generation engine. The filtered
pairs are identified by the failure of the cost optimization
solver. The sequences are generated after the exhaustive
solver cycle so that the filtered pairs could be applied
simply as constraints on the combinatorial number
sequence generation scheme (See Figure 4). The cost

between each pair of indices found by the solver in
each sequence is aggregated and the total cost is paired
with the sequence number as depicted in Equation (4).
The optimization problem is then reduced to picking the
minimum total cost sequence among all probable
sequences. When the minimum cost sequence is picked
as shown in the example as the second sequence with the
cost of C2 ¼ 8:50, only the first point in the sequence is
set for the sure-match and the kernel is shifted to the
right (next time-stamp station), thereby the decision for
the current sample’s snap location (state) is always made
based on the probability states of the GPS sample stations
in the next range whose width is not constant. So, the
sequence s2 is picked and the first GPS sample location in
the sequence is fixed at the snap location corresponding
to the index f1g as depicted in Equations (4) and (5).

costk : Ck ¼
Xwidth� 1

i¼0
Di;iþ1
�
�

�
�

()

k

s0 ¼ 2; 4; 6; 9; 11f g : C0 ¼ 10:5

s1 ¼ 2; 4; 6; 8; 11f g : C1 ¼ 12:5

s2¼ 1; 3; 5; 7; 10f g : C2¼ 8:50 (4)

argminðsk;CkÞ7! s2;C2f g (5)

2.3. Adapting width

The decision of adapting the MC window width is
based on the ratio between the geodesic distance of
the route (snaps) to the actual geodesic distance of the
GPS points (samples) similar to the probability density
function of Newson and Krumm (2009). However,
instead of the difference depicted in Equation (1c),
we have used the ratio of the distances to detect the
errors in the map-matching process. The need for
increasing the kernel width can easily be noticed in
the mid section of a typical example case shown in
Figure 8 as the ratio of the geodesic distances exceeds
an ad-hoc threshold limit of ten ð�10Þ. Basically, the
kernel’s width was not wide enough to include the
future history that would anticipate favoring on a
more logical (sensical) map-matching. Hence the
redundant looping around the intersection is avoided
with the help of including more points inside the MC
kernel as seen in Figure 9 (10 points versus 5 points).
The adaptation scheme of doubling the width has a
maximal ceiling of 14 points and will not re-try once
this ceiling is reached as the number of probable
sequences quickly becomes formidable to enumerate
and solve.

The adaptive selection of the width in the MC
kernel has shown to have hardened the results tremen-
dously with tolerable computational cost increase

Figure 7. Projection of a GPS point GPSi on a prospective edge e.

490 B. K. KARAMETE ET AL.

since the feedback loop depicted in the main algorithm
illustrated in Figure 5 reverts back onto the original
and narrower width of MM right after running the
wider kernel scenario. From the computational experi-
ments, it could also be speculated that the likelihood of
making an erroneous decision with a narrower span is
not uncommon particularly for the cases where the
sampling frequency is not adequate and/or more valid
sequences exist.

Another example for the adaptive kernel solving the
wrong path selection issue due to the erroneous GPS
samples (latitude shift) can also be seen in Figure 10,

where the result of our adaptive scheme is compared
against the fixed width algorithms (Newson and
Krumm 2009; Brakatsoulas et al. 2005; Felner 2011;
Greenfeld 2002). Adaptively switching the width twice
more than the nominal value helped including the
“key” GPS samples whose projection snaps are over
the correct graph road segment. The automatic switch
from fixed width to adaptive width is detected by
computing the ratio between the geodesic and the
route distances within any consecutive pairs of GPS
samples during the “Slide Kernel Feedback” step of the
main algorithm depicted in Figure 5.

Figure 8. Map-matching result using the fixed width MC kernel of five GPS points across; cost optimization mistakenly chooses the
route with a redundant loop in the middle of the trip routing. Red dots are the actual GPS points.

Figure 9. Map-matching result using the adaptive width MC kernels that changes; the error is detected since the ratio between the
geodesic distance of current route to the actual geodesic distance between the pair of GPS samples is more than the defect
threshold. The MM is fixed adaptively using a wider width of 10 points.

GEO-SPATIAL INFORMATION SCIENCE 491

3. Results and discussion

We have used thousands of sets of GPS trip data,
emitted from the test vehicles across the continental
US to verify and harden the results of our algorithm.
In fact, the remedying idea of adapting the Markov
chain width directly came from analyzing these valu-
able sets of data and seeing where the problem areas
arise. The observed cases where we have noticed a
potential adaptation needed can be itemized as
follows:

● Approaching to the forking road segments where
GPS samples are actually closer to the wrong
section of the fork is resolved to a “correct” path
only by “looking ahead” toward the next set of
points (See Figure 11, Figure 12, Figure 14).

● The noise in the GPS data is making many choices
viable and only having a cumulative score of com-
binatorial path optimization leads to a reasonably
“correct” path. (See Figure 15).

● The upper and lower passes of the road network
where the z-level changes may have overlapping
two dimensional (Lon,Lat) coordinates and hence
graph edges built without hashing on z-level
values, can be connected from lower to upper
sections. The resolution may both need to have
the graph to be z-aware and also use wider markov

chains in map-matching. (See Figure 10, Figure 11,
Figure 14).

● The round-about sections require a wider ker-
nel widths to identity the paths correctly. (See
Figure 13).

All of the above observations show the need for a
Markov Chain type optimization to be employed and
also reflects the need to change the kernel width adap-
tively to resolve the paths correctly.

The sequences generated via Markov chains uses
many mini-Dijkstra runs as explained in the Subsection
2.2 above. However, if the GPS points are too far away
from each other, particularly the case for the inability to
emit the data inside tunnels, etc., the Dijkstra runs should
be allowed to cover more than the distance between the
two GPS end points. In order to minimize the computa-
tional load, however, if the Dijkstra runs can not reach the
“end” node from the “start” within a user set limit, e.g.,
within 10 hops, then the sequence is deemed to be not
valid, and skipped by leaving gaps in the matched route
(See Figure 11).

There are also rare scenarios due to numerical instabil-
ity induced by the modifications of the edge weights
proportional to the proximity of the graph edges to the
GPS samples, that can result in sequences that might have
redundant back and forth traveling over the same edge.
These are referred as folding vertex paths and should be

Figure 10. The comparison of our adaptive kernel width algorithm vs fixed width conventional map-matching algorithms. Black
dots denote the input GPS samples that are erroneous due to a random latitude shift. The fixed width algorithms result in dark
gray path, with redundant loops indicative of “faulty” map match. The adaptive switch of the kernel width twice more than the
fixed width enabled HMC algorithm to include the “key” GPS samples to change the overall route to a more correct alternative as
depicted by the cyan path.

492 B. K. KARAMETE ET AL.

filtered out before finding the minimum cost sequence
depicted by Equation (4). Filtering out these paths
requires additional computational time, and even though
the individual check is not expensive, the need to repeat
the check for shifting kernels can not be amortized easily.
Hence, filtering is made optional, as a typical trade-off
between accuracy and speed. The additional time is pro-
portional to the kernel width, the total number of GPS
points, as well as the number of prospective snap edges
per GPS point found by the R-Tree search. It can vary

from low 1%� 2 % to almost as high as 30 % for the rare
cases of 10þ hour-long trip durations with 2� 5 seconds
GPS frequencies. For example, the folding vertex paths,
such as the sequence as, f2; 2; 2; 2; 2; 2; 3; 3; 4; 4; 4; 3; 5;
5; 6; 7; 7g, can easily be identified due to its redundant
f . . . 3; 4; 4; 4; 3 . . .g fold pattern.

An ad-hoc matching score per trip is computed to
understand how well the mapped route is matching with
the underlying GPS points as depicted in Figure 16. The
GPS points are snapped back onto the map-matched

Figure 12. Result of map-matching; the trip data is provided by Ford motor company. Red dots depict the GPS sample points
emitted from the vehicle – continuous blue line is the result of the map-matched route.

Figure 11. Result of map-matching over the Seattle data set courtesy of Microsoft (Newson and Krumm 2009).

GEO-SPATIAL INFORMATION SCIENCE 493

route and the distance difference between the GPS loca-
tion to its closest snap location is aggregated over the
whole set and divided by the total number of GPS sample
points. In lieu of the ground truth data which is unfortu-
nately not available for our tests, this heuristic measure at
least gives a notion for an error of the match similar to
mean squared residuals over the entire data set. Almost
all good matches demonstrate a match score well within
1 � 5 m (1 m � 10� 5 in degrees). Any match score
higher than this threshold range indicates that either the
samples are highly noisy and/or the order in the GPS
timestamps are erroneous.

Finally, the performance of our algorithm can be said
to be dependent on a number of parameters; total num-
ber of GPS points, the input parameter of initial Markov
Chain width (the adaptive kernel never goes below this

preset value), the number of closest edges per GPS point
found by the R-Tree. This latter parameter and the chain
width directly impacts the total number of combinatorial
sequences and consequently the number of mini-dijkstra
runs. Our algorithm allows users to trade accuracy versus
speed. However, it is rare that we have seen a map-
matching process taking more than a few seconds on
modern laptops (2–3 GHz intel i7 processors). Another
limiting parameter we have instrumented is the cap
on the number of combinatorial sequences generated,
currently, at 10; 000 that gets generated within each ker-
nel shift that is usually never violated with the common
widths of 6� 9 points and 3� 4 closest number of edges
per GPS sample.

The testing results shown in Figure 16 are tabulated
on Table 1, including 140K GPS samples of 77 trips

Figure 14. Result of map-matching; the trip data is provided by Ford motor company. Map-matching correctly determines the
“correct” path at forking intersections with blue line as matched route and red dots as raw GPS points.

Figure 13. Result of map-matching; the trip data is provided by Ford motor company. The matched route shown in blue most
likely depicts a person’s dropping kids off at the school grounds and returning back making turns around the multiple round-
abouts.

494 B. K. KARAMETE ET AL.

with varying frequencies computed over a graph of
475K edges, and a maximum of 3 closest snaps per
GPS sample within a search radius of 10 m. The table
lists mean and maximal errors found in these trips for
various base widths to compare the fixed width algo-
rithms against our adaptive method. Mean squared
residuals over all trips are tabulated over the “AvgErr”

column and the maximum error found in any trip
depicted as the “MaxErr” column, respectively. One
major noteworthy remark on these results is that there
appears to be one trip case that has a wrong map match
causing over hundred meter error and none of the fixed
widths up-to 14 points could address the trip’s map
successfully (within an admissible error bound).
However, the fixed HMC width of 14 takes almost
exponentially large run time increase compared to the
lower widths, that makes the entire map-matching pro-
cess computationally prohibitive. The solution is the use
of our adaptive algorithm and as depicted over Table 1,
even the use of only 5 (five) points adaptively was
seemingly able to switch to the necessary width where
necessary to resolve the erroneous path matching issue.
The optimal choice seems to be the use of base width of

Figure 16. Result of map-matching; the trip data is provided by Ford motor company. The picture shows the map-matching routes
for 77 trips around seattle area. The red line specifically depicts a user picked trip with an id of 418257229 and a match score of
� 1:2 � 10� 5.

Figure 15. Noise in the GPS samples is quite visible by the void red circles zoomed in on a portion of the Microsoft’s Seattle data
set. The Map-matching algorithm finds the best route by screening possible path sequences under the constraints of the graph
road network topology.

Table 1. Adaptive versus fixed width results.
Width (base) Method Time/s AvgErr/m MaxErr/m

Fixed 5.23 11.6 152.7
5 Adapt 9.54 1.9 5.5

Fixed 17 6.8 152.7
8 Adapt 25 1.1 1.3
10 Fixed 53.7 2.9 152.7
14 Fixed 453.6 0.9 1.3

GEO-SPATIAL INFORMATION SCIENCE 495

8 adaptively to suppress both the maximal and average
errors. Both 8 and 5 point adaptive results show orders
of magnitude speed gains compared to the fixed width
conventional HMC algorithms.

Though the entire algorithm depicted in Figure 5 is
not particularly suitable for parallelization, we have par-
allelized the batch runs of many trips as well as registering
the mini-dijkstra runs within each solver. On one test
batch consisted of more than 300K sample points belong-
ing to 370 individual trips of varying degrees of sampling
frequencies between 0:5 seconds and 5 seconds, we were
able to obtain results in less than 24 seconds using 8 cores
where 95 percent of the trips had match scores well below
1 m over a graph of approximately 7 million edges.
Though these results are satisfactory in practice and the
algorithm has been adopted by our industry partner car
company, parallel batch runs can not be proven to pro-
vide linear at-scale performances. One of the reasons of
bottlenecking the overall scalability is due to the “heavier”
sets of trips with more GPS samples that might also
require more adaptive cycles. In the future, we are plan-
ning to improve the scalability of the algorithm by
addressing parallelism within each individual module in
the core algorithm depicted in Figure 5. Finally, the novel
idea of using the adaptive Markov kernel width proposed
as the main contribution of our paper could easily be
adopted and plugged into the existing map-matching
algorithms to improve the general accuracy of the results.

It is also worth mentioning about the nature of the
software in this algorithmic work, that is entirely imple-
mented from scratch using C++, and without the use of
any third-party libraries. The I/O to the map-matching
algorithm is provided from the in-memory database of
Kinetica, a GPU streaming data warehouse and using its
propriety C++ APIs. The map-matching is itself a yet
another Kinetica API, and available in RESTFUL/C+
+/Java/R/Python API formats. The novel idea of using
an adaptive Markov chain width in addressing map-
matching problems is also granted a provisional US
Patent recently (EFSID: 38,512,015, App No: 62,970,845).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Bilge Kaan Karamete is the Senior Director of Engineering
for the Geospatial, Graph and Visualization efforts at
Kinetica. His research interests include computational algo-
rithm development, unstructured mesh generation, parallel
graph solvers and computational geometry. He holds PhD in
Engineering Sciences from the Middle East Technical
University, Ankara Turkey, and post doctorate in
Computational Sciences from Rensselaer Polytechnic
Institute, Troy New York.

Louai Adhami is a principal engineer at Kinetica, and holds a
PhD in robotics from INRIA. He works on high concurrency

graph solvers and graphics capabilities. He enjoys doing soft-
ware architecture for distributed systems and teaching at
George Washington University, Washington DC.

Eli Glaser is VP of Engineering at Kinetica. He leads the
development teams concentrating in data analytics, query cap-
ability and performance. Eli holds Master’s in Electrical
Engineering from The Johns Hopkins University, Baltimore
Maryland.

Data availability statement

Due to the nature of this research, participants of this study
did not agree for their data to be shared publicly, so sup-
porting data is unfortunately not available.

References

Boeing, G. 2017. “OSMnx: New Methods for Acquiring,
Constructing, Analyzing, and Visualizing Complex Street
Networks.” Computers, Environment and Urban Systems
65: 126–139. doi:10.1016/j.compenvurbsys.2017.05.004.

Brakatsoulas, S., P. Dieter, S. Randall, and W. Carola. 2005.
“On Map-matching Vehicle Tracking Data.” Pages 853–
864 of: Proceedings of the 31st International Conference on
Very Large Data Bases. Trondheim, Norway.

Chen, B. Y., H. Yuan, Q. Li, W. H. K. Lam, S.-L. Shaw, and
K. Yan. 2014. “Map-Matching Algorithm for Large-Scale
Low-Frequency Floating Car Data.” International Journal
of Geographical Information Science 28 (1): 2238.
doi:10.1080/13658816.2013.816427.

Dijkstra, E. W. 1959. “A Note on Two Problems in
Connexion with Graphs.” Numerische Mathematik 1
(1): 269271. doi:10.1007/BF01386390.

Felner, A. 2011. Position Paper: Dijkstra’s Algorithm versus
Uniform Cost Search or a Case against Dijkstra’s
Algorithm. In: Proceedings of the Fourth Annual
Symposium on Combinatorial Search, Castell de Cardona,
Barcelona, Spain.

Goh, C. Y., J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and
P. Jaillet 2012. “Online Map-matching Based on Hidden
Markov Model for Real-time Traffic Sensing Applications.”
Pages 776–781 of: 15th International IEEE Conference on
Intelligent Transportation Systems. Anchorage, AK, USA.

Greenfeld, J. 2002. “Matching GPS Observations to
Locations on a Digital Map.” In Proceedings of 81th
Annual Meeting of the Transportation Research Board.
Washington, DC, USA.

Guttman, A. 1984. “R-Trees: A Dynamic Index Structure for
Spatial Searching.” Page 4757 of: Proceedings of the 1984
ACM SIGMOD International Conference on Management
of Data. Boston, Massachusetts, USA: SIGMOD 84.

Karamete, B. K., R. Aubry, E. L. Mestreau, and S. Dey. 2016.
“A Novel Double Link Structure (DLS) with Applications
to Computational Engineering and Design.” AIAA
Aerospace Sciences Meeting 54: 1301.

Kinetica. 2020. Kinetica DB. Inc Document for Network
Graph Solvers - V7.0.11. https://www.kinetica.com/docs/
graph_solver/index.html. Accessed 06 01 2020.

Newson, P., and J. Krumm 2009. “Hidden Markov Map
Matching through Noise and Sparseness.” GIS ‘09: 17th
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 336343. Seattle,
Washington, USA.

Quddus, M. A., W. Y. Ochieng, and R. B. Noland. 2007.
“Current Map-matching Algorithms for Transport

496 B. K. KARAMETE ET AL.

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1080/13658816.2013.816427
https://doi.org/10.1007/BF01386390
https://www.kinetica.com/docs/graph_solver/index.html
https://www.kinetica.com/docs/graph_solver/index.html

Applications: State-of-the Art and Future Research
Directions.” Transportation Research Part C: Emerging
Technologies 15 (5): 312–328. doi:10.1016/j.trc.2007.05.002.

US-Government. 2020. “US Government GPS Accuracy.”
Accessed 06 January 2020. https://www.gps.gov/systems/
gps/performance/accuracy/

Wang, Y., Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang,
M. Osama et al. 2017. “Gunrock: GPU Graph Analytics.”
ACM Transactions on Parallel Computing 4 (1): 1–49.
doi:10.1145/3108140.

Wei, H., Y. Wang, G. Forman, Y. Zhu, and H. Guan. 2012.
“Fast Viterbi Map Matching with Tunable Weight
Functions.” Page 613616 of: Proceedings of the 20th

International Conference on Advances in Geographic
Information Systems. SIGSPATIAL 12. New York, NY,
USA: Association for Computing Machinery.

White, C. E., D. Bernstein, and A. L. Kornhauser. 2000. “Some
Map Matching Algorithms for Personal Navigation
Assistants.” Transportation Research Part C: Emerging
Technologies 8 (1–6): 91–108. doi:10.1016/S0968-090X(00)
00026-7.

Xin, R. S., J. E. Gonzalez, M. J. Franklin, and I. Stoica 2013.
“GraphX: A Resilient Distributed Graph System on
Spark.” In First International Workshop on Graph Data
Management Experiences and Systems. GRADES 13. New
York, NY, USA: Association for Computing Machinery.

GEO-SPATIAL INFORMATION SCIENCE 497

https://doi.org/10.1016/j.trc.2007.05.002
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
https://doi.org/10.1145/3108140
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1016/S0968-090X(00)00026-7

	Abstract
	1. Introduction
	2. Algorithm
	2.1. Solving mini-dijkstras
	2.2. Sequencing
	2.3. Adapting width

	3. Results and discussion
	Disclosure statement
	Notes on contributors
	Data availability statement
	References

