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ABSTRACT 
 

A multivariate analysis was performed on some soil nutrient and Cone Index (CI) data from the 
research and demonstration farm of the Dept. of Agricultural Sciences, University of Juba in South 
Sudan. The main objective of the study was to characterize the spatial distribution of the soil 
nutrients: N, P, K, Fe and Mn as well as soil penetration resistance CI. A Principal Component 
Analysis (PCA), Gaussian Mixture Model (GMM) and Hierarchical Cluster Analysis (HCA) were 
performed on the analyzed samples. The Bayesian Information Criterion (BIC) was used for model 
selection between the Equal size, Equal shape and Equal orientation (EEE) and Equal size, Equal 
shape and Variable orientation (EEV) models which defined the size, shape and orientation of the 
ellipsoid with full covariance matrices. Eigenvalues of the three major principal components F1, F2 
and F3 accounted for 75.67% of the total variance of the data. From hierarchical clustering, P was 
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observed to cluster with Fe, Mn with N which at second level clustered with K then with CI. The 
results of the PCA showed that Nitrate-N, Mn and Kwere strongly influenced by CI and so 
determining their spatial distribution. This could be associated mainly to earlier anthropogenic 
activities on the soil. The results of this study also showed spatial relationships between individual 
soil nutrients with both K and P mutually antagonistic with Nitrate-N, whereas between K and P 
where mutually synergistic. While P was strongly adsorbed to Fe, this was associated to lithogenic 
soil materials and therefore interpreted as derived from natural sources of the Eutric Leptosol. The 
goodness-of-fit test using the Kolmogorov-Smirnov (KS) showed that the values of the variables: 
CI, K, P and Fe were significant at p 0.05 and that the data followed normal distribution, whereas 
Mn and Nitrate-N were not. The KS test also corroborated the results of strong spatial dependency 
of each variable at less than 25%. The multivariate GMM adequately described the spatial 
distribution of all measured variables than the unimodal Gaussian. 
 

 

Keywords:  Dendrogram; gaussian mixture model; hierarchical clustering; kolmogorov-smirnov test; 
multivariate analysis; spatial distribution. 

 

1. INTRODUCTION 
 
Principal component analysis (PCA) is a 
multivariate analysis method also known as 
eigenvector analysis. It has been applied in 
environmental studies in; assessing heavy metals 
in urban soils [1], estimating heavy metals in 
agricultural soils [2], assessing earthworm 
populations in oil plantation soils [3], on genetic 
diversity of tomato germplasm [4], on effects of 
soil parameters and environmental factors on 
flavonoid contents of medicinal plants [5],soil 
factors influencing heavy metals in medicinal 
plants [6], and in combination with geo-statistical 
tools in assessing fertility of humicrhodichapludox 
[7], on distribution of trace elements in 
unsaturated soil profile [8].  
 
Similarly, PCA has been performed to investigate 
management impacts on soil quality [9], on 
chemical and microbial properties in histosols as 
influenced by land-use types [10] and microbial 
community   structure and function [11,12]. 
 
PCA is a technique that reduces the number of 
variables and eliminates the relations among 
input variables by developing a set of new 
variables that are linear functions of the original 
variables. This new variables are denoted as F1, 
F2, F3 etc. Whereas F1 will give the direction 
with the greatest variation, F2 orthogonal to F1 
will give the direction with the maximum variation 
left in data. The variables are multiplied by 
loadings that are vectors of constants generated 
during PCA and whose values reflect the 
importance of original variables in the direction of 
each PC [13]. The resulting PC can be used to 
project the originally multidimensional data into 
only a two- or three dimensional space known as 
a score plot [14]. 

 
Hierarchical Cluster Analysis (HCA) is another 
method applied for geological/hydrological 
analysis and looks for groups of samples 
according to their similarities. HCA is a powerful 
tool for analyzing datasets for expected or 
unexpected clusters including the presence of 
outliers. In HCA, each point forms, initially, one 
cluster, and the preliminary matrix is analyzed. 
The most similar points are grouped forming one 
cluster and the process is repeated until all 
points belong to one cluster [15]. HCA examines 
distances between samples and datasets. The 
result obtained could be presented in a two-
dimensional plot called dendrogram which 
illustrates the fusions or divisions made at each 
successive stage of analysis. Typically, a 
hierarchical agglomerative cluster analysis of the 
studied variables is performed and the square of 
the Euclidean distance taken as a measure of 
similarity between samples [16]. Samples that 
are similar will lie close to one another, whereas 
dissimilar ones will lie distant from each other. 
Several methods may be applied in deciding 
similarity or dissimilarity between two groups: (i) 
single linkage, which uses the minimum distance 
between points in different groups; (ii) complete 
linkage, which uses the maximum distance 
between the furthest points; (iii) mean linkage, 
which uses the average of all distances between 
points in the two groups and (iv) centroid linkage, 
which uses the distances between group 
centroids (e.g. group means). 
 
The PCA and HCA are both methods for 
uncovering relationships in large multivariate 
datasets. However, they are not sufficient for 
developing a classification rule that can 
accurately predict the class-membership of 
unknown sample [17]. Classification or pattern 
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recognition is a method that seeks to develop 
class-membership based on some specific and 
measured property within the variables. For 
cluster classification, the similarity-based 
classifier e.g. k-nearest neighbor (KNN) may be 
chosen under the premise that  distances 
between points in the measurement space will be 
inversely related to their degree of similarity.  
 

Another tool for multivariate analysis is the 
Gaussian Mixture Model (GMM). This is a 
parametric probability density function (pdf) and 
is often applied as a model for the probability 
distribution of continuous measurements of 
variables in a dataset. As opposed to histogram 
analysis, which is non-parametric, GMM provides 
greater flexibility and precision in modeling the 
underlying statistics and smoothening gaps 
resulting from sparse sample data by assigning 
variable to specific membership. Based on the 
premise of a vector-based variable x, a dataset is 
assumed to have a univariate normal (Gaussian) 
distribution if its probability density function is 
given by: 
 

�(�, �, ��) =
�

√���
exp �−

�

���
(� − �)��(Eqn. 1) 

 

It is also said to have a multivariate normal 
(Gaussian) distribution if its probability density 
function is given by: 
 

�(�, �,S) =
1

(2�)
�
�� |S|
�
��
exp �−

1

2
(� − �)�S��(� − �)� 

(Eqn. 2) 
 

Where �  is the mean (location) and Σ the 
covariance matrix of the Gaussian that 
incorporates the variance , and therefore 
dispersion. Under the GMM, the random variable 
x is generated from several distinct random and 
independent processes each generating a 
specific pdf. A GMM is often a mixture of two or 
more independent or unimodal pdfs combined 
into a single bi- or multimodal pdfs. The concept 
of clustering using the GMM is based upon the 
fact that individual data points are produced by 
choosing from one of a set of multivariate 
Gaussians and the GMM parameters estimated 
using the iterative Expectation-Maximization 
(EM) algorithm or Maximum A-Posteriori (MAP). 
Although the EM algorithm has some limitations 
(e.g. it is not guaranteed to converge to a global 
rather than a local maximum of the likelihood), it 
is generally efficient and effective for the 
parameters’ estimation of GMM [18]. 
 

The Gaussian model is then fitted to the data 
points that is either spherical (circular with off-
diagonal correlations equal to zero) symmetry or 
elliptical (off-diagonal correlation equal to non-
zero). To fit a Gaussian model to given data 
points, the sample mean and variance is 
computed and the resulting Gaussian model is 
superimposed as a contour map. 
 
GMM, a parametric probability density function 
(pdf) was employed and provided the basis for 
partitioning and fuzzy classification of the data 
into different clusters. Arguably, this probabilistic 
method partitions the data by considering that 
each component represents a cluster through the 
k-means clustering that tends to minimize the 
Euclidian distance or the within-cluster sum of 
squares (WCSS). A measure of dissimilarity or 
similarity between observed data sets was used 
to combine specific clusters (agglomerate) or 
split (divide) them altogether. This hierarchical 
clustering is achieved by use of measuring the 
Euclidian distance between pairs of observations 
and a linkage criterion which specifies the 
dissimilarity of sets as a function of the pairwise 
distances of observations in the sets. We used 
complete linkage as the agglomeration method 
as suggested by [19] for clustering the same 
dataset. 
 
The primary goal of any soil scientist is the ability 
to adequately characterize and describe major 
soil factors, parameters and processes as well as 
their spatio-temporal distribution within the 
context of precise farming. Increasing 
environmental awareness in trying to reduce the 
application of especially costly inorganic 
fertilizers and use of heavy farm implements by 
farmers has prompted the need for more precise 
and sustainable farming methods. Introducing 
precise farming especially in developing 
countries like South Sudan would not only 
reduce unnecessary production costs, but 
promote a more sustainable and 
environmentally-friendly farming. As South 
Sudan intends to embark on large scale 
commercial farming to address food security, 
such tools as PCA would be utilized in designing 
precise and sustainable farming methods that 
would compromise both economic and ecological 
imperatives. 
 
The objective of this study was to assess how 
best the PCA in combination with GMM and HCA 
methods could be used to adequately 
characterize the spatial distribution of some 
major soil nutrients such as Nitrate-N, P, K and 
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micro-nutrients: Mn and Fe as well as the soil 
penetration resistance. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

The study was conducted at the demonstration 
farm of the Department of Agricultural Sciences, 
College of Natural Resources and Environmental 
Studies (CNRES), University of Juba, South 
Sudan. The study area lies within the green belt 
agro-ecological zone of Central Equatoria State 
(CES), South Sudan and lies between latitude 
4°50’28’’ and longitude 31°35’24. The average 
annual rainfall is about 650 mm during the 
months from April to October with dry spell in 
July. The climate of the area is tropical wet 
during the rainy season with average 
temperatures at around 27 to 30°C and over 
35°C during the dry season of November to 
March. The soils can be predominantly classified 
as Eutric Leptosol with less associated Eutric 
Gleysol as shown in Table 1. 
 

The experimental area was the 40 m x 80 m 
demonstration farm or nursery of the Department 
of Agricultural Sciences, University of Juba and 
divided in to 32 plots each 10 m x 10 m. Four 
samples were extruded from each 12 out of the 
32 randomly chosen plots for the NO3-, P, K, Mn 
and Fe analysis. Similarly, four penetrations at a 
separation distance of 1 to 2 m per plot to 
maximum depth of 80 cm were determined using 
a hand push electronic cone penetrologger 
(Eijkelkamp Penetrologger SN) as reported by 
[20,21] with a cone type 1.0 cm2, 60° and a 
penetration speed of 2 cm/s. Processed soil 
samples were analyzed for various soil  nutrients: 
nitrate-nitrogen, phosphorus, potassium, 
manganese and ferric iron using the LaMotte 
basic Model STH-4 Outfit (Code 5029) and 
values expressed in kg/ha except for Mn which 
was expressed in ppm. 
 

2.2 Multivariate Analysis  
 

Datasets consisting of (n=48) from 12 randomly 
selected plots were analyzed by PCA, HCA and 
GMM methods. The PCs were used to project 
new position of variables in space using new 
matrix which would indicate degree of similarity. 
Equally, the HCA was applied to cluster two 

objects by calculating iteratively the dissimilarity 
between them till a minimum agglomeration 
criterion: the Bayesian Information Criterion is 
attained. The Pearson correlation coefficient was 
used as index of similarity. Meanwhile, the GMM 
was used to model data using a set of Gaussian 
distributions. These models were used in the 
clustering process with each clustered group 
assigned to each Gaussian. A class model 
related to the classification of soil nutrients 
according to their spatial distribution and 
variability was developed by applying the 
statistical software package XLSTAT 2014.4.06 
(Addinsoft SARL, Paris, France). PCA was used 
to establish the simplest mathematical model 
capable of describing the dataset satisfactorily. 
An overview on the three approaches in shown in 
Fig. 1. 
 

Table 1. Average values of some selected 
physical and chemical properties of  

Eutric Leptosol 
 

Soil property   Description 
Soil texture classification* 
Drainage class (0-0.5%)* 
Sand  
Silt  
Clay  
pH (LaMotte STH test 
method) 
Vol. Water Content  
Bulk density (gm/cm³) 
Humus content 

Sandy loam 
Moderatelywell 
47.6% 
45.1% 
7.3% 
7.2 
 
18.4% 
1.34 
2.95% 

*Source: Harmonized world soil data viewer  
version 1.2 

 

2.3 Geo-Statistical Analysis 
 

Spatial variability of soil nutrients as well as 
penetration resistance measured as cone index 
were analyzed using geo-statistics. Geo-
statistical software GS+TM Version 9 (GAMMA 
DESIGN SOFTWARE, LLC, PLAINWELL 
MICHIGAN, USA, 2001) was applied to quantify 
the isotropic spatial variability and semi-
variogram models. Several models: spherical, 
exponential, Gaussian and linear semi-variogram 
were considered in selecting the best fitting 
model based on the values of weighted residual 
sums of squares, regression coefficient (r²) and 
relative spatial structure or dependency 
measured as the ratio of the nugget to sill. 
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Fig. 1. Diagrammatic representation of the proposed multivariate analysis using the PCA, HCA 
and GMM approach on soil variables of Eutric Leptosol 
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For the GS+ Version 9, the semi-variance is 
defined by the following equation: 
 

�(h) = � [2(
�(�)

���
xi+ h)+2(xi)]

²                  
(Eqn. 3) 

 

Where (h) is the experimental semi-variogram 
value at distance interval h; N(h) is number of 
sample value pairs within the distance interval h; 
and z (xi+h) is sample value at two points 
separated by the distance interval h. All pairs of 
points separated by distance h (lag h) were used 
to calculate the experimental variogram. Several 
variogram functions were evaluated to choose 
the best fit with the data. After several simulation 
runs, the Gaussian model was found and chosen 
to be adequate in describing the measured data 
and was fitted to the empirical semi-variogram 
as: 
 

γ(h) = C0 + C (1- exp (
��

��
)]                (Eqn. 4) 

 

Where	γ(h) = semi-variance for interval distance 
class h, h= lag interval, C0 = nugget variance ≥ 0, 
C = structural variance ≥ C0, and A0 = range 
parameter. In the Gaussian model, both the 

effective range A = 30.5. A0 and sill (C+C0 that lies 
within 5% of the asymptote) are less discernible 
owing to the gradual and asymptotic rise of γ(h). 
 
3. RESULTS 
 
3.1 Principal Component Analysis 
 
Application of the PCA three principal 
components were extracted that cumulatively 
explained for 75.67% of the total data variability 
with an eigenvalue of greater than 1 (Table 2). 
The other three components had an eigenvalue 
less than 1 and were not considered. In our 
study, the first two components accounted for 
56.65% of total data variability as represented 
the single largest variability contained in the data 
set [22]. 
 
The first component F1 correlated with 3 of the 6 
soil nutrients analyzed. The nutrients Nitrate-N, P 
and Fe correlated positively with the F1, while it 
negatively correlated with Mn and CI and neither 
with K (Fig. 2). 

  

Table 2. Principal component analysis 
 

  F1 F2      F3   F4 F5 F6 

Eigenvalue 1.881 1.517 1.142 0.671 0.484 0.305 

Variability (%) 31.356 25.291 19.025 11.187 8.063 5.078 

Cumulative % 31.356 56.647 75.672 86.859 94.922 100.000 
 

 
 

Fig. 2. Loading plots of principal components analysis on soil nutrients: Nitrate-N, P, K, Fe, Mn 
as well as soil penetration resistance measured as Cone Index, CI 
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Similarly, the F1 versus F2 loading plot showed 
that, variable K was not in any way correlated 
with CI, however, the variable CI was negatively 
correlated with both Nitrate-N and P and 
positively correlated with Mn. Variables with 
significant loadings on F1 Nitrate-N (factor 
loading= 0.231), P (factor loading = 0.875), Fe 
(factor loading = 0.594), while Mn (factor 
loading= -0317) and CI (factor loading=-0.781) 
had negative loadings.  Interestingly, variable CI 
had negative loadings on both F1 and F2, 
whereas Nitrate-N, P, K and Mn had positive 
loadings on F2 and Fe negative loading on F2. 
 

Biplot generated by the PCA in Fig. 3 showed the 
spatial distribution of the different variables in the 
different plots. For example, the amounts of P, 
N03-N, K and Fe in kg/ha were higher in plots 1, 
3, 4, 5, 6 and 12 than in the rest plots. Similarly, 
CI and Mn was higher in plots 7, 8, 9, 10 and 11 
than in the rest plots. The CI as first principal 
component F1 significantly influenced the spatial 
distribution of the soil nutrients. 
 

Ward’s method of hierarchical agglomerative 
clustering was used to characterize soil 
parameter CI and soil nutrients N P K, Fe and 
Mn. The method is based on minimum variance 
in which groups are formed so that the pooled 
within-group sum of square is minimized. Fig. 4 
shows the hierarchical agglomerative clusters. 
The first clusters (Phosphorous, P and Ferric, 
Fe) and (Manganese. Mn and Nitrate-Nitrogen, 
N) are fused at 0.3412 and 0.2542 respectively. 

The second cluster (Mn, N and Potassium, K) 
are fused at around 0.1042. The third cluster 
(Mn, N, K and CI) is fused slightly above the 
truncation level of 0.0542. 
 
For all the measured soil variables, there was 
only one class of spatial dependency as shown 
in Table 3. Spatial dependency was classified on 
the basis on nugget/sill ratio. Spatial class ratio 
between 0 to 25% were considered strongly 
spatially dependent; those between 25 to 75% 
moderately spatially dependent; and greater than 
75% as weakly spatially dependent [23]. The 
structural variance of all estimated parameters 
showed a narrow range of variability within the 
plots between 8.6 and 15.5% thereby indicating a 
strong spatial dependency. 
 
The results of the Pearson’s correlation matrix 
have been presented in Table 4. The correlation 
matrix identified the relationship among the soil 
nutrients and CI with values between +1 or -1 
revealing either a positive or negative relation 
between the variables. In general, the CI showed 
a negative correlation with most soil nutrients: 
N03-Nitrogen, P, K and Fe (p<0.0001) and a 
weak positive correlation with Mn. However, 
between the individual soil nutrients, P showed a 
weak positive correlation with K, Nitrate-Nitrogen 
Fe. Similarly, Mn showed low negative 
correlation with bothP and Fe (p<0.0001) as well 
as with K and Fe (p<0.0001). 

 

 
 

Fig. 3. Biplot generated by the principal component analysis for some soil nutrients and CI 
distributed within the different plots of the sandy loam soil (Eutric Leptosol) 
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Fig. 4. Dendrogram generated by the agglomerative Hierarchical Cluster Analysis (HCA) for 
some soil nutrients and CI of a sandy loam soil (Eutric Leptosol) 

 
Table 3. Geo-statistical parameters for the different soil nutrients including the Cone Index of a 

sandy loam soil (Eutric Leptosol) (Adapted from Lomeling [21]) 
 

Parameter  NO3
- -N  P  K Mn Fe                 CI 

Model  Gaussian  Gaussian  Gaussian Gaussian Gaussian    Gaussian 
Nugget variance, C0  104.24  2402.50  1200.00 0.065 0.089            0.0378 
Sill, C+C0  827.00  27930.00  7758.00 0.674 0.774            0.282 
Range (m), A0  14.85  8.50  16.93 98.76 1.95              8.80 
R²  0.709  0.865  0.793 0.532 0.304            0.232 
RSSC0/C+C0  904998 

 0.126 
(12.6%) 

 4.04E+08 
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(8.6%) 

 2.14E+07 
 0.155 
(15.5%) 

0.0425 
0.096 
(9.6%) 

0.136            0.261 
0.115            0.134 
(11.5%)        (13.4%) 

0-0.25 or 0-25% strong dependency; 0.25-0.75 or 25-75% moderate dependency; >0.75 or >75% weak 
dependency 

 
Table 4. Pearson correlation coefficient matrix (r) of CI and some soil nutrients 

 
Variables Cone Index,  

CI 
Manganese, 
Mn 

Phosphorous, 
P 

Potassium,  
K 

Ferric,  
Fe 

Nitrate-
Nitrogen 

Cone Index, CI  1      
Manganese, Mn  0.138   1     
Phosphorous, P -0.566 -0.172 1    
Potassium, K -0.139  0.032 0.155  1   
Ferric, Fe -0.208 -0.127 0.373 -0.455  1  
Nitrate-Nitrogen -0.117  0.232 0.231  0.148 -0.025 1 

 
Table 5. Factor loadings of the first 5 components on some soil nutrients and CI of a sandy 

loam soil (Eutric Leptosol) 
 

  F1 F2 F3 F4 F5 
Cone Index, CI -0.781 -0.221  0.130  0.333  0.443 
Manganese, Mn -0.317  0.320  0.717 -0.524  0.082 
Phosphorous, P 0.875  0.188 -0.002 -0.020  0.265 
Potassium, K -0.002  0.821 -0.395 -0.066  0.329 
Ferric, Fe  0.594 -0.603  0.326 -0.020  0.290 
Nitrate-Nitrogen  0.231  0.542  0.591   0.530 -0.135 
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The results of factor loadings are presented in 
Table 5. The first three principal components F1, 
F2 and F3 had eigenvalues greater than 1 and 
accounted for 75.67% of total variation of the 
data with values at 31.36%, 25.29% and 19.03% 
respectively. F1 showed high loadings of P, Fe 
and low Nitrate-Nitrogen with positive effect and 
CI, Mn and K with negative effect. F2 showed 
high loadings of K, Nitrate-Nitrogen and 
moderate loadings of Mn and P with positive 
effects whereas it showed negative effects with 
CI and Fe. F3 showed high loadings of Mn, 
Nitrate-Nitrogen and moderate to low loadings of 
Fe and CI with positive effects with negative 
effects of both P and K.  
 

We employed a Gaussian mixture model to 
analyze the dataset and estimate the probability 
density functions. For illustrative purposes, we 
chose one example for CI and Mn to 
demonstrate the performances of both single and 
multimodal Gaussian distribution of the GMM as 
in Fig. 5. Whereas Fig. 5(a) showed a unimodal 
Gaussian pdf with mean value at about 1.81 
MPa, Fig. 5(b) showed a GMM multivariate 
distribution with four components. Due to the 
closeness of the components 2 and 3 in Fig. 
5(b), only three were chosen: 1, 2 and 4 with 
peak CI values at 1.2, 1.9 and 3 MPa 
respectively. The mixture model showed an 
average CI value of about 2 MPa. The GMM 
analysis was corroborated by scatter plots 
showing four clusters as in Fig. 6. The ellipsoid 
approximated the standard deviation of the data 
distribution within each cluster with the size, 
shape and orientation of each cluster indicating 
the means, co-variance matrices and correlations 
of the variables. With the full covariance matrix, 
the mixture fits the four cluster shapes well with 
the pdf covering the space containing most of the 
observations. 
 

Four 2-D probability density function ellipsoids of 
the GMM of CI on Mn are shown in Fig. 6 with 
wide range of CI values between 0.6 to 3.5 and 
centered means: μ_1 at 1.91, μ_2 at 1.24, μ_3at 
3.00 and μ_4 at 1.89. A closer look at Fig. 6 
shows that for CI values between 1.5 to 
2.5generated a wider Mn spatial variation with 
two clusters centered at levels 4.5 and 5.3 ppm 
suggesting that this CI value had a comparatively 
greater influence on Mn distribution ranging 
between 4.5 to 5.5 ppm than CI values lesser 
than 1.5 or greater than 3.0. 
 
Fig. 7 shows both the unimodal and multimodal 
Gaussian pdfs of Mn distribution. The single 

Gaussian pdf showed a mean value at about 4.5 
ppm whereas the GMM showed 2 peak values at 
about 4.2 and 5 ppm for components 1 and 2 
respectively. As aforementioned, the CI mean 
values between 1.5 to 2.5 had significant 
influence on Mn distribution.  
 
With inferences from Fig. 6, we attempted to 
highlight the significance of CI on Mn by focusing 
mainly on two clusters. Fig. 8 shows 2 two-
dimensional Gaussians of CI on Mn. CI values 
with center means between 1.5 and 2.0 that 
generated two Mn clusters with average values 
at 4 and 5 ppm respectively. With the Normalized 
Entropy Criterion (NEC) at 0.206 and therefore 
less than 1, there was clustering structure in the 
data with many observations centered around 5 
ppm value. The observations were spread across 
a wider range of CI values up to 3.5 than those 
around 4 ppm value. The results showed the 
positive correlation between CI and Mn 
suggesting that high CI tended to favor increased 
Mn and vice-versa [20]. The illustrations in Figs. 
5 and 7 for both CI and Mn showed that the 
weighted mixture of the components using the 
GMM provided good and accurate approximation 
for the spatial data variation than the single 
Gaussian pdfs. 
 
Fig. 9 shows a group of 5 clusters (representing 
5 probability density functions) of Gaussian 
distribution between the F3 and F4 with the 
Normalized Entropy Criterion (NEC) as basis for 
model selection at 0.009 (i.e. less than 1). This 
showed that within the complete dataset five 
center locations for both point P and K were 
evident with lowest P concentrations at 64 k/ha 
and for K at around 232 kg/ha respectively. The 
fifth cluster and highest concentrations for P and 
K were at around 512 kg/ha and 488 kg/ha 
respectively suggesting a more synergistic 
relationship between both elements. Between 
95-99% of soil P is insoluble P and unavailable 
for plants [24,25]. Although the full covariance 
matrix as opposed to either diagonal or identity 
covariance matrix was precise and covered most 
of the observations within the ellipsoid, not all 
were captured owing to the large variability and 
inability of the GMM to minimize the Euclidean 
distance between adjacent observations. 
 
Fig. 10(a) showed the F3 loading on F6 with four 
cluster classes (representing four probability 
density functions) with equal volumes shapes but 
different orientations. The NEC was 0.067 with 
EEV as best model. Although not quiet 
discernible, a more, accurate and clearer 
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antagonistic relationship especially between 
classes 2 and 4 was noticeable. At lower P 
between 60-250 kg/ha, the Nitrate-N was around 
70 kg/ha and reduced to about 30 kg/ha with 
increased P at between 350-550 kg/ha. Similarly, 
Fig. 10(b) showed clustering of data with NEC at 
0.007 and EEV as best model. There was less 
discernible relationship between F4 and F6 
showing both antagonistic and synergistic 
features, however, with a predominating 
antagonistic relationship. In class 1, with F4 at 
around 280 kg/ha, the F6 was at around 60 
kg/ha. In class 3 and 4, F4 was at 380-520 kg/ha 
and 440-520 kg/ha respectively. There was 
generally a negative correlation between F4 and 
F6. 

The estimated parameters of each GMM 
component for the CI and some soil nutrients are 
summarized in Table 6. Note that in all cases, 
the GMM components have more or less similar 
proportions or weights. However, large standard 
deviation values especially of P, K and Nitrate-N 
and the few observations poorly captured by the 
full covariance matrix within the thin-shaped and 
stretched ellipsoids suggest wide spatial 
variability and apparently poor clustering of data 
and vice-versa. Generally, the results of our 
study suggest that any measured soil variable, 
irrespective of its spatial distribution, can still be 
approximated well using GMMs. 

 

 
 

Fig. 5. Single Gaussian pdf approximation (a) and the GMM multivariate normal distribution of 
CI (b) showing the four components 

 

 
 

Fig. 6. Scatter plots of 4 two-dimensional Gaussians of CI on Mn with full covariance matrices. 
Best model was the EEE (Equal volume, Equal shape and Equal orientation) 
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Fig. 7. Single Gaussian pdf approximation (a) and the GMM multivariate distribution of Mn  

(b) showing the two components 

 
Fig. 8. Scatter plots of 2 two-dimensional Gaussians of CI on Mn with full covariance matrices. 

Best model was the EEE (Equal volume, Equal shape and Equal orientation) 

 
Fig. 9. Scatter plots of 5 two-dimensional Gaussians of phosphorous on potassium with full 

covariance matrices. Best model was the EEV (Equal volume, Equal shape and Variable 
orientation) 
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Fig. 10. Scatter plots of 4 two-dimensional Gaussians of phosphorous on Nitrate-Nitrogen (a) 
(b) and a 5 two-dimensional Gaussian of potassium on Nitrate-Nitrogen with full covariance 

matrices. Best model for both cases was the EEV 
 

Table 6. Results of GMM parameters of Cone index and some soil nutrients of a sandy  
loam soil 

 

Parameter     
Cone index, CI 
 
 
 
 
Manganese, Mn 
 
Phosphorous, P 
 
 
 
 
Potassium, K 
 
 
 
 
Ferric, Fe 
 
 
 
Nitrate-Nitrogen 

Class/cluster 
1 
2 
3 
4 
1 
2 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
1 
2 
3 
4 
5 

Proportion 
0.168 
0.275 
0.083 
0.474 
0.146 
0.854 
0.063 
0.083 
0.271 
0.208 
0.376 
0.063 
0.083 
0.271 
0.208 
0.376 
0.168 
0.276 
0.083 
0.474 
0.167 
0.417 
0.167 
0.167 
0.083 

Meanvector 
1.91 
1.25 
3.00 
1.89 
4.13 
4.96 
69.03 
295.89 
117.31 
193.77 
423.93 
246.52 
292.66 
408.61 
502.24 
429.83 
4.54 
5.22 
4.60 
5.17 
11.89 
23.61 
44.04 
65.60 
112.98 

Standard deviation 
 
 
 
0.526* 
 
0.335* 
 
 
 
 
154.422* 
 
 
 
 
74.679* 
 
 
 
0.353* 
 
 
 
 
28.845* 

* Standard deviation for all observations of measured variable 
 

Contour maps were generated by the 
interpolation method (Inverse Distance 
Weighting, IDW) as in Fig. 11. Although the plots 
between 1, 3 and 9 remained fallow during the 
last five years, CI values were high between 2.26 
to 2.94 MPa due to the presence of tree roots 

and termite anthills that registered high values 
during measurement. CI values tended to 
decrease in an easterly direction to values as low 
as between 0.73 – 1.07 MPa. Generally, the CI 
values in all plots were below the critical value of 
3 MPa on sandy loam soil as observed by [26].  
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Fig. 11. IDW contour maps showing the distribution of the Cone Index CI in a Eutric Leptosol  

(Adapted from Lomeling [21]) 
 

Table 7. Statistical parameters of some soil nutrients and CI of a  
Eutric Leptosol 

 

Variable Mean Variance Skewness 
(Pearson) 

Kurtosis 
(Pearson) 

Kolmogorov-
Smirnov Test 

Chi-Test 

CI 1.840 0.270 0.587 0.866 0.368* 0.348* 
K 416.307 5576.883 -0.708 -0.132 0.443* <0.0001 
Mn 4.842 0.112 -1.173 1.139 0.008 <0.0001 
P 260.021 23846.11 0.136 -1.465 0.121* <0.0001 
Nitrate-N 39.087 832.009 1.317 0.906 0.002 <0.0001 
Fe 5.027 0124 -0.353 -0.721 0.912* 0.277* 

   * significant at p  0.05 
 

Table 7 shows some statistical parameters that 
were tested using the Kolmogorov-Smirnov (KS) 
and Chi-tests for unimodal distribution of CI and 
soil nutrients. The test using the (KS) showed 
that the values of the variables: CI, K, P and Fe 
were significant at p 0.05 and that the data 
followed normal distribution, whereas Mn and 
Nitrate-N did not. Conversely, the Chi-test 
showed that all values except of the CI and Fe 
variables were not significant at p0.05 and so 
did not follow normal distribution. No reasons 
could be given for this contradiction in the fit-of-
goodness of both test procedures. Despite these 
anomalies, it can be concluded that the KS test 
provided better fits for the spatial distribution of 
CI and soil nutrients. 
 
3.2 Nutrient Distribution and Spatial 

Dependency 
 
It was also reported that, soil nutrients generally 
tended to increase with the sand fraction 
whereas this was the reverse trend for silt and 
clay fractions. Sand particles have relatively 
higher friction coefficients than silt and clay 

particles, which would explain the increasing 
trends of CI with sand fraction [20]. 
 
From the dendrogram in Fig. 4 it may be seen 
that the first four variables (P, Mn, Fe and 
Nitrate-N) are clustered together at first level with 
strong spatial dependency at 8.6%, 9.6%, 11.5% 
and 12.6% respectively. Meanwhile, K was 
clustered to Nitrate-N and Mn at second level 
with strong spatial dependency at 15.5%. Results 
of our study showed that lower spatial 
dependency values implied higher similarities 
between the compared variables. 

 
4. DISCUSSION 
 

The results of PCA and cluster analysis showed 
that the spatial distribution of soil nutrients was 
most strongly correlated with soil CI within the 
different plots. The results further showed that CI 
was the most important major factor that affected 
the spatial distribution of the soil nutrients. These 
results are in agreement with those reported by 
[20] on Eutric Leptosol. Increasing CI in the 
different plots was a major aspect that influenced 
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the spatial distribution of soil nutrients. With an 
increase in the CI, the available N03-N, P, K and 
Fe decreased correspondingly as shown by the 
negative Pearson´s correlation. For example, the 
amounts of P, N03-N, K and Fe in kg/ha were 
higher in plots 1, 3, 4, 5, 6 and 12 than in the rest 
plots. Similarly, CI and Mn was higher in plots 7, 
8, 9, 10 and 11 than in the rest plots. The CI as 
first principal component F1 significantly 
influenced the spatial distribution of the soil 
nutrients.  
 
Although the first three factors F1, F2 and F3 
explained most of the variance, components F4 
to F6 were also chosen to explain any 
interactions and loading effects of each individual 
variable. The idea was to assess, if there were 
any antagonistic or rather synergistic effects of 
any of the variables on the other. The study also 
tried to assess, if indeed anthropological 
influences had any significant roles on spatial 
distribution of some soil nutrients, or rather if 
spatial distribution was random and only 
dependent on lithogenic influences. Associating 
the respective variables to each component, (CI 
to F1, F2 to Mn, F3 to P, F4 to K, F5 to Fe and 
F6 to Nitrate-N) and incorporating geo-statistical 
parameters obtained from Gaussian model 
(Table 3), the short-range component (at 8.8 m) 
of F1 positively correlated with F2 (at range 
98.76 m). Conversely, F1 negatively correlated 
with F5 (at range 1.95 m). Component F3 
positively correlated with F4 with ranges at 8.5 
and 16.93 m respectively.   
 
The plots on the research and demonstration 
farm showed heterogeneous distribution and 
spatial variations of soil nutrients and cone index. 
The results also indicated that not all soil 
nutrients and cone index values were 
homogenously distributed in all plots. Plots in the 
same quadrant with similar predominating soil 
nutrients could practically be managed alike. It 
also implied that, similar plot management 
practices would be tailored on each quadrant 
within the context of precision farming. Kriged 
maps reported by [21] showed more CI, Nitrate-N 
and P on the left-hand side gradually decreasing 
in the easterly direction, whereas Mn and Fe 
tended to increase in the opposite direction. 
Implicitly, this did not suggest any negative 
correlations between CI and both Nitrate-N and 
P, on the contrary, high CI negatively correlated 
with both Nitrate-N and P as reported by [20]. 
 
The CI values were generally high (2.94 MPa) at 
the left-hand side of the farm and gradually 

decreased in an easterly direction to as low as 
0.73 MPa at the extreme right edge of the farm. 
One reason for this is probably the differentiated 
tillage activities on the farm. There was hardly 
any tillage activity on the left hand side of the 
farm in the last 3 years as opposed to much soil 
tillage on the right hand side which must have 
significantly altered the structural and 
aggregative nature of the soil.  
 
The interaction CI and Mn (or F1 and F2) found 
in the present study could be described as 
synergistic. Increase in CI would increase inter-
particle contacts with correspondingly reduced 
pore space. This would tend to favor anaerobic 
soil conditions thereby increasing Mn availability. 
In the present study, we also found out that on 
average, increasing P concentration in soil did 
not accentuate K availability in soils. Although 
the Eutric Leptosol has a low organic carbon 
(0.72% by weight) and low CaCO3 (0.2% weight), 
there appeared to be specific preference for Ca2+ 

as opposed to K
+
 ions in soils in forming both in- 

and organic complexes with phosphate ions. 
Such mutually synergistic relationship would 
suggest that increasing concentration of P ions 
would enhance further adsorption to Ca2+ and so 
increasing the concentration of K

+
. Conversely, a 

mutually antagonistic relationship was also found 
between P and Nitrate-N whereby there was 
specific and preferential adsorption of the 
phosphate than Nitrate ions [27]. Furthermore, 
our work showed that Nitrate-N was clustered 
with Mn. This mutually synergistic relationship 
would be the result of high water table and poor 
drainability of the Eutric Leptosol following the 
heavy rains between April and November. In the 
absence of cultivated crops (that would utilize the 
Nitrate-N), much of the Nitrate-N was stored 
within the rhizophere. Equally, the high CI values 
tended to reduce soil drainability thereby 
enhancing the development of anaerobic 
conditions which favored reduction processes 
and therefore Mn increase [20]. Based on these 
groups, the clustering of these nutrients in the 
studied soil could be ascribed to two different 
components: P and Fe that have a common 
lithogenic origin and the CI, K, Mn and Nitrate-N 
to have a common anthropogenic influence. 
 
The K

+
 is required for cells to maintain the 

osmotic balance and regulating stomatal opening 
and closure during photosynthesis [26,28]. It is 
also an essential co-factor for many enzymes. 
Similarly, P concentration in plant cells is closely 
associated with photosynthetic rate [29] and; 
therefore, decrease of P in leaves will reduce the 
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plant growth. By implications, soils low in K+ 
would not only reduce stomatal activity, but also 
low available P would lead to reduced 
photosynthesis and hence reduced plant growth 
rates. Analysis of the dendrogram confirmed that 
the CI is an independent variable that tended to 
influence spatial variations of K and Nitrate-N 
suggesting that both nutrients reduced with 
increased CI whereas Mn increased with 
increasing CI and vice-versa. 
 
P showed a significant and positive relationship 
with Fe (r = 0.37, p < 0.0001). The significant 
relationship between these nutrients could be as 
a result of adsorption resulting from degradation 
of manure or organic material and mineralized 
Fe-oxides. Especially under anaerobic conditions 
influenced by both high soil compaction (high CI 
values) and high water table, this would favor 
reduction processes and enhancement of 
Vivianite Fe3(P04)2.8H20 [30]. Clustering and the 
mutually synergistic relationship between P and 
Fe was to be expected as much of the P ions 
(H�PO�

�) were easily adsorbed to Fe ions (Fe
2+

) 
especially under poor drainable conditions 
(conditioned by high CI values or high soil 
penetration resistance) where Fe(III)-oxide was 
reduced to Fe2+.  
 
The set of 6 original soil properties as in Fig. 4 
with low similarity measure at 0.054 (truncation 
or cut-off threshold level), created three classes 
that explained 75.67 % of the data variability. 
Increase of the cut-off level would not only imply 
increase in the number of classes but also 
represent percentage increase in similarities 
suggesting that comparison was better under a 
large number of classes. For example, increasing 
similarity at cut-off threshold level between 
0.2542 and 0.4518 would increase the number of 
classes to 5 therefore enhancing better 
comparison of the variables.  
 
In our study, the Euclidian distance was utilized 
as a basis for classifying the clusters that 
demonstrated both mutual antagonistic and 
synergistic relationships between the different 
principal components. However, the Euclidean 
distance, suffers from the so-called “scaling 
effect” [17] due to the inadvertent weighting of 
the variables in the analysis that can occur due 
to differences in magnitude among the 
measurement variables. For example, the 
measured concentration of two variables: P and 
Nitrate-N is soils with varying ranges. The 
measured amount of P in the studied soil varied 
between 61 and 511 kg/ha, whereas that of 

Nitrate-N between 11 and 116 kg/ha 
approximately one-fifth of P. A five-fold increase 
in the P concentration will have a greater effect 
on Euclidean distance than a similar increase in 
the Nitrate-N concentration. However, effect of 
variable scaling on the Euclidean distance by the 
different measured variables may be mitigated by 
standardizing the measurement variables, so that 
each variable has a mean of zero and a standard 
deviation of 1. 
 
One of the major problems in hierarchical 
clustering is setting a threshold value or 
truncation level that would define similarity within 
a cluster. This value is often subjective [17]. By 
varying the truncation or cut-off level, similarity 
within a cluster may increase or decrease. This is 
conditioned by practical considerations as to 
whether or not one needs a high degree of 
similarity within a given cluster. If the similarity 
value is substantially larger, the random variation 
and dissimilarity within the data is probably 
negligible and vice-versa. Our study also showed 
that clustering of the different variables gave rise 
to correspondingly different number of classes, 
e.g. between F1 and F2 gave 3 cluster classes, 
whereas between F4 and F6 gave 5 cluster 
classes. Practically, smaller number of classes 
e.g. 2 to 3 would suggest lesser variability with a 
more homogenous spatial distribution than a 
larger number of cluster classes that would show 
more variability and heterogeneity. 

 
5. CONCLUSION 
 
The applications of PCA, HCA and GMM were 
used to grouping multi-nutrient and Cone Index 
data on sandy loam soil (Eutric Leptosol) from 
the University of Juba demonstration farm, in 
South Sudan. The first principal component F1, 
explained 31.36%, the second principal 
component F2, accounting for 25.29% and F3 
19.06%. GMM analysis for the rest components 
F3 to F6 showed that these components 
representing individual variables had either 
antagonistic or synergistic relationships, which 
explained their spatial distribution and variations. 
The results of PCA made it possible for the initial 
six variables to be reduced to three factors 
representing 75.67% of the total variance. From 
hierarchical clustering, CI was observed to be 
clustered with K, Mn and Nitrate-N whereas P 
was clustered with Fe. It can be inferred from 
these results that, the spatial distribution of K, Mn 
and Nitrate-N was predominantly due to 
anthropological influences as conditioned by CI 
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and less lithogenic as determined by nature of 
Eutric Leptosol.  
 
The PCA is a standard tool in modern data 
analysis owing to its simplicity, non-parametric 
method for extracting relevant information from 
large and confusing data sets. The PC is a less 
complicated approach that can provide a 
roadmap for reducing complex dataset and as 
well disclose less discernible structures. 
However, PCA is not a statistical method from 
the viewpoint that there is no probability 
distribution specified for the observations. 
Therefore, it is important that only in combination 
with other pattern recognition tools does it best 
serve to explain underlying relationships between 
the different variables within a data set. 
 
The PCA, HCA and GMM methods used herein 
have been found to be most useful in identifying 
the structure and inherent inter-linkages within 
the variables contained in the dataset. The 
approaches described in these methods rely 
heavily on mathematical algorithms whose 
results are presented in graphical form as 
clusters, scatter plots and dendrograms for easy 
patter recognition and interpretation. For two 
independent variables or components, a mixture 
of Gaussian probability density functions is best 
modeled under the assumption that the 
distribution is bi- or multimodal as it is poorly 
approximated using a single Gaussian.  
 
In conclusion, the PCA, HCA and GMM helped 
reveal some underlying relationships between 
soil nutrients and soil parameter CI. They were 
shown to be useful methods for studying the 
spatial distribution and variations of soil nutrients 
and variables either due to intrinsic factors 
(lithogenic) or anthropological influences.  More 
research on wider range of soil mechanical-
physical as well as chemical parameters would 
provide more knowledge on their interactions and 
inter-linkages. 
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