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Abstract

In this paper, a new distribution, named ‘the Inverted Hamza distribution’, was introduced. It is an extension
of the Hamza distribution that can model real-world data with an upside-down bathtub shape and heavy tails.
Mathematical and statistical characteristics such as the quantile function, moments, entropy measure,
stochastic ordering and distribution of order statistics have been derived. Furthermore, dependability
measures such as the survival function and hazard function have been developed. The greatest likelihood
technique was used to estimate the distribution parameters. To demonstrate the applicability of the
distribution, a numerical example was given. According on the results, the proposed distribution
outperformed the competing distributions.
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1 Introduction

Most statistical investigations have been focused on modelling life time data, and this has led to the proposition
of diverse statistical distribution [1]. In modelling life time data, the consideration of the character of the hazard
rate is a strong determiner. For instance, in real life we have some life time data with monotone (increasing and
non-increasing) hazard rate and some with non-monotone (bathtub and upside down bathtub or unimodal)
hazard rates, and several statistical distributions has been proposed to fit each of this categories of data [25-28].

[1] proposed a two-parameter lifetime distribution with the following probability density function (pdf) and
cumulative distribution function respectively:

fH(y):6?—6(04+Qy6je“9y 1)
ab® +120 6

And

Ox(6°y° +66"y* +306°y° +1206°y* +3600y +720)
(a@s +120)

Fo(y)=1-|1+ e )

For y>0, #>0and a>0.

This distribution is known as the Hamza distribution. “The mathematical and statistical properties including the
parameter estimation can be shown” in [1]. An application from biological and engineering data, have been
described in their paper to show its importance, and a discussion of its superiority over other one parameter
lifetime distributions such as Lindley distribution due to [2], Ishita distribution by [3], and Pranav distribution
by [4], respectively.

The aim of this work is to introduce a new distribution called the inverse Hamza distribution, which is an
extension of the Hamza distribution. This new distribution is developed to cover the gap of modelling lifetime
data that have non-monotone hazard rates or upside-down bathtub shapes [47], as the Hamza distribution can
only model data with monotone hazard rate or bathtub shape. There has been other proposed distributions which
as extensions of some already proposed distributions [30,32-36], we have distributions such as; the inverse
Ishita distribution, the inverse Rama distribution, inverse Lomax distribution, the inverse Gamma distribution,
the two parameter inverse exponential distribution, the modified inverse Rayleigh distribution, the extended
inverse Lindley distribution, the inverse power Akash distribution, the Weibull inverse Lomax distribution, the
inverse power Ishita distribution, transmuted exponentiated exponential distribution, transmuted inverse Lindley
distribution, the transmuted Fretchet distribution, the power inverse Lindley distribution, inverse weighted
Lindley distribution, Bayesian analysis of the inverse generalized Gamma distribution, inverse Nakagami-m
distribution, Burr XII in Reliability analysis proposed by [5-18,19,20,21 and 49] respectively . From the
literature reviewed in this paper, the inverse and power inverse transformation technique were used to transform
distributions that cannot model lifetime data with upside-down bathtub shapes and they have shown to produce
distribution that are more flexible and more useful for analyzing complex data structure in various field of life,
than their corresponding baseline distributions.

The organization of the rest of the paper is divided into eleven sections, introduction of proposed study is
discussed in the first section. Inverse Hamza distribution has been defined in the second section. Survival and
hazards rate function are discussed in third section [38,39]. Moment has been derived in fourth section. In the
fifth section, the derivation of the quantile function, in the sixth section stochastic ordering has been discussed.
Renyi Entropy measure has been discussed in seventh section. Order statistics of proposed distribution has been
discussed in eighth section [42-46]. Maximum likelihood estimation method has been derived for estimation of
the parameter of proposed distribution in ninth section [46,48]. Asymptotic Confidence Interval estimations of
the parameter for the proposed distribution was derived in the tenth section. In the eleventh section, application
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of proposed distribution on real lifetime data has been presented. Conclusions have been given in the last
section.

2 The Inverse Hamza (IH) Distribution

1
Proposition 1: If a random variable Y has a Hamza distribution, the variable X = ? will have an inverse

Hamza distribution (IHD) of equation 1. A random variable X is said to have an inverse Hamza distribution
with scale parameter @, and its probability density function (pdf) and cumulative density function (cdf) are
defined respectively by;

f (X):—96 (ﬁ+—0 jez'x>09a>0 3)
i (a6?5+120) X2 6x° R

6° af®+120 1 1 5 20 60 120) -2
F(X’9)2a95+120( 6° +W+x79+92x4+93x3+94x2+ﬁjeX;X’a’bo @

Proof 1: Given the distribution of the Hamza random variable Y defined in (1). Assume that another random
variable X is related to Y by the inverse function = g(Y) =Y~1. Then the distribution of X is the Inverse
Hamza distribution.

Let X =Y
Y=X" (5)
4 dx
fIHD (X) = fIHD (gz (X))d_ [29] (6)
y
Substituting for egn (5) in egn (1), we have
6° 1)-2
fn = e x 7
"0 = 6F +120 (OH exﬁj "
oy 2
2 __X 8
ox (@)

The Jacobian transformation of X is given by
|J|:/—X‘2/:X‘2 (9)

Multiplying eqgn (7) and eqn (9), we obtain the following;

0° a 0)-7°
fX; ,6’:— —+— e X 10
(X 0) a¢95+120(xz 6x8) (10

As observed in (10), the proof of proposition 1 is not yet complete until the limit of the random variable X has
been obtained. For this purpose, we consider Lemma 1.
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Lemma 1: If for the Hamza distribution Y lies between O and oo, then for the inverted Hamza distribution X
also lies between O and oo .
Proof:

If,

y=0,then,X:y_1=0_1:oo Yy =00, then, X:y_lzoo_lzo

Combining (10) and the limit 0 < X < 0. Hence, egn. (8) reduces to

o o, 0 e_g 0<X<o
f(Xa,0)=1< ad® +120\ x> 6x° '

0, elsewhere

11)

Proof 2: Given that X is a random variable that follows inverse Hamza distribution («, 8), then the cumulative
distribution is obtained using the expression below;

F(u)=p(U <u)= | f(u)dy W)

Inserting egn. (10) into eqgn. (12)

6° t 0 4
PIX<X)=F .(Xa,0)=—— || at 2+ =t | dt 13
( ) o (X, 0) a95+120_([(a 6 ) 13)
F,HD(x,a,e)za—e(afrze-“1dt+§fr8e-6’“dt) (14)
af®+120 " 1 67

Let y=t",=t=y "', whent=0,y=oo.

when t =X,y = X", = —t’dy =dt

Substituting for dt and t in eqn. (14), gives

1 1
6° ¢ 2,-0 -2 9; 8,-0 -2
F.HD(X,a,9)=m(£aye '(-y )dy+g£ye '(-y?)dy)
1 1

Fro(x@,0) =—2—(-afedy-2 [ yevay) s

at®+120° 3 67

1

For —ajef‘gydy
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Recall [€"ow =e"

Let W=—60Y,when y=X",W=—0X", and when Yy =00, W=—00,0y =—0OW/ 8

%Jiewdw = %[eWIZ"l _ %[eaxl 3 e,wJ =% ot

(04 —oxt
e 16
0 (18)

1

07 ¢ _
Integrating —EJ‘ y6e aydy using the integration by part method, which is expressed as

Iudv = uv—J'vdu , (17)
e
In this case, U =Y®,du =6y°dy,dv=e?dy,v= Idv = je’gydy == substituting u, du, and v in

(17) we have;

O 6 —gy —yGe“’y 6¢ o s _y6e—9y 6 _yse—ay 5¢ .
—oyedy=———+—|ey'dy= +— +=|e?y'd

_[-yPe™ 6y’ 30y'e™ 120y’ 360y’e™” 720ye™” 720e™” .
e 6 & 6" 6° 6° o'

0

-1 -1 -1 -1 -1 -1 -1
X e xPe™ BxHfe ™™ 20x% ™ 60x2e ™ 120x7e ™ 120e*
+ + + + + +

6 0 0° 0° 0' 0° 0°

(18)

Combining (16) and (18) and inserting in (15), gives

Fp (X, a,0) =

6° af®+120 x°® x®° 5x* 20x® 60x? 120x7')
5 6 Tt 2 + 3 + 4 + 5 €
ab® +120 2, 6 6 6 0 0 6

Hence, the cdf of the Inverted hamza distribution is given by;

6° af®+120 x* x® 5x* 20x® 60x? 120x7
Fipo (X, a,0) = +—+—+ + + +

e xa,60>0 (19)
a0 +120 & 6 6 & & & 95] “

Corollary 1: The Inverted Hamza distribution is a valid probability density function. Thus,
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j fro (X, @, 0)dx =1

0 (20)
limFyp (x,,6)=1

I ax e dx+ 9 I xge"xlj

0 6 0

06
Proof: —
a6’ +120

0° T 0T 11
—_— a_[x“e 9’*dx+—.[y“e IIxdx (21)
af®+120 { 6
Recall the standard integral for inverted gamma distribution
l'a
(22)

_0
ule Adu =

a

O sy 8

Hence, we re-write equation (21) as;

6° (arl 9r7]
+

af®+120\ 0 667
6° a 120 6° a6’ +120
=5 100 -t 6 |~ 5 6 =1
af®+120\ 6 6O a6® +120 2,

And limF, (x,a,6) =1

im0 [@f"+120 x* x® 5x* 20x® 60x* 120X
o= f® +120\  6° 6 0 & & ¢ 6

P {ags +120 ()* N (0)° N 5(0) N 20(0)” N 60(0) +120(oo)1]ee(00)1
at®+120(  ©6° 6 6 & 6° o' ¢°

Where (OO)_a =0and e 7" =’ =1

6° a6® +120
5 6 =1
a6’ +120 o

5x*  20x° 60X 120x1] o
— + + + e =1

Then, lim 7 + 5 ; 7 7 7 s

0° [a05+120 x° X
x—>» 0° +120

Thus, f,p (X, o, 6’) is a valid and proper probability density function
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The behavior of the proposed distribution for varying value of @, & has been presented in Fig. 1 and Fig. 2.
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3 Survival and Hazard Function
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Fig 2b:cdf plot of HD

Proposition 2: Survival function S (X; g, a) and the Hazard function of IHD can be defined as

S(x0,a)=1-F,(x) ,[31]

(23)

S(uoa)-1—0 [faflvio 1 1 5 2 60 1207
Y (a05+120) 0° 6x°  Ox° 6x* % 0'x? O°x
Xx>0,0,a>0
f X;0,
(x0.0) - 2050:)
S(x;e,a)
0° 0
g ol e )
h(X)= a@ +120\ x oX
e @f°+120 1 1 5 20 60 120)
(0m95+120) 0° 6x°  Ox°  0°x* 0% 0'x% 6%

Figs. 3 and 4 below is a presentation of the behavior of the survival and hazard function of IHD respectively, for

varying values of the parameter 6, .

(24)
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4 Moments

The moments of the distribution are the most important aspect when studying the characteristics of a
distribution, and it includes the mean, variance, skewness, kurtosis, etc. [1]. The rth moment about the origin,

,u; of IHD can be expressed explicitly in terms of complete gamma functions [1].

Proposition 3: Suppose X follows IHD (&, & ). Then the rth moment about the origin, /J; ,of IHD is

O'T(7-r)

= 6(a6 +120)

Proof: The rth moment X~IHD (@, &) is obtained as follows [41],

(a6®+120) 3

o0

96
(a6®+120)[ g

X (a<95 +120)

-1 (2] % -1
aj X2 % dx + EJ. X 8 % dx
0

96

(@-n)

T n-a-1 77 I
Using inverse gamma function Jy e Ydy=
0

ga—n

—ox7t

_+_
x?  6x8

11 oyt OF 74 oot
ajxrlle O dx+gjxr o= dx
0
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6° O(T7-r O'T7—r
= 5 " 7r = 5 (25)
(a6®+120)[ 61 & 6(a8° +120)

Eq. (25) completes the computation of the rth crude moment of the Inverse Hamza distribution. And it will exist
if r<6, therefore only the 1%, 2" 3 4™ 5" and 6" non-central moment and the central moment can be
obtained.

The mean of the IH distribution is obtained by setting k=1 in (25). Thus,

. 200 6)
M= a6 +120)
The mathematical function for obtaining the 2" 3 and 4™ non central moment are given below;
o4 7)
1= a6 +120)
. 6°
_ 28
= (a6 +120) @9
. o*
_ 29
= 36 +120) #9)
The variance of the IH distribution is obtained as follows;
var(x) = E(x*) — (E(x))? (30)
46? 4006
var(x) =—; — 5
a0"+120 (6° +120)
Var(x) — — M (3]_)
12 = (a6P +120)7

5 Quantile Function

The quantile function is used for the generation of random numbers. It can also be used to derive percentile of a
distribution [1]. The quantile function is defined by;

Q) =Fp (% 0,a,p)

Where u is distributed as random distribution, Q(U) ~[0,1], and F,;(X;6,, ) is the cdf of inverse
Hamza distribution.

Proposition 4: Given that X is a random variable having the pdf IHD, then the quantile Q(p) function is
obtained as follows;
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o(p) = 6° @f°+120 1 1 5 20 60 120 e—§
(a6® +120) 6° 6 Ox° ' X 9'x® 6°x

ot 6° af°+120 1 1 5 20 60 120

" (a6 +120)Q( 6 o ox oX OxE &

p) X X X X X X

1. p6° [(atf+120 1 1 5 20 60 120 1
0 (a65+120)Q(p)[ SO 6XEE 9pxEE 02px*P T X3P 0 px2F 0P pxP v
(32)

6 Stochastic Ordering

Stochastic ordering of positive continuous random variables is an important tool for judging their comparative
behavior. A random variable X is said to be smaller than another random variable Y, where X and Y follows IH
distribution, in the

(i) Stochastic order (X <, Y) if F, (X)>F, (x) forall x.

(i) Hazard rate order (X <, Y) if h, (x)>h, (x) forall x.
(iiii) Mean residual life order (X <., Y ) if my (x)>m, (x) forall x.

—mrl

o . - f (%) .
(iv) Likelihood ratio order (X <, Y) if ————~ decreasesin X.
fy (%)

The results above due to [22] are well known for establishing stochastic ordering of distributions

X<

—Ir

U

X<qY

Yo XS, Y=>X<,Y (33)

—mrl

The THD is ordered with respect to the strongest ‘likelihood ratio ordering’ as shown in the following theorem:

Proposition 5: Let X and Y~ IHD (6, ) and (6,,c, ) respectively. To show the flexibility of the IHD, its
likelihood ratio is defined as

616 (6{1 + 91) e_01x71
fy (% 0,6,) (a16?15+120) x> 6x°

_ (34)
f, (X0,,6,) 92'3(062+92]eazx1
(e85 +120)\ x* * 6X°
6 6 N
(67 +120) x* 6 (@67 +120)\X* * 6x
B 016 (a2025 +120) 6051X6 +Hl e—91><’1+192>(’1 (35)
6 (e +120) | 6a X"+,

55



Frank et al.; Asian J. Prob. Stat., vol. 23, no. 1, pp. 46-64, 2023; Article no.AJPAS.100725

Taking natural log of (33), we have

f. (X a,,0 5 i
1nfx(_—“11):6|n % M +In w —i(‘é’l‘@z)
Y(X’az’gz) ) a6 +120 6a,x° +6, ) X

Taking the derivative of In o Coby)

gives

_ 5
Hence, ¥ _ 36(e6, — 2,6,)X —%(92 -6,)=0

X (6a,x°+6,)(6a,x°+6,) X

Thus, for 8, = 6, and a; = a,(or for a, = a; and 6; = 9, ;—xln ’;XE;“Zl; < 0, This implies that X <, Yand
yWx;02
hence X <., Y, X <, Yand X < Y.

7 Order Statistics

Proposition 6: Let X, X,,.., X, be a random sample of size n from IHD in Eg. (3). Let
X(l) < X(z) <...< X, denote the corresponding order statistics [24]. The pdf and cdf of the kth order statistic,

say Y = X(k) are given by

()= o P (- F (R ()

(k—=1)!(n—k)
n! k(n—-k | _
S e D ) SR ORI @)

(k—D)1(n—k)15

and

) ,-nk @[ln_ j](_l)l F(y), (37)

Respectively, for K =1,2,3,...,n.

Thus the pdf and cdf of the kth order statistics of IHD are obtained as

o+j-1

— ettt —+
f (y): nl -oln—m (_ )J 96 96 6 9 02 93 94 efﬂy’l 06 £+i e,é (38)
T (0-1)(n-0) at® +120 120y at® +120 y* 6y’
05

And
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j+l

5 -6 -3 -2
. al +120+y?+ 5y +20y 60y

J n n— 96 62 63 94 oyt
E — y
()= O.ZOZ[J( J( ol a95+120 1207 ¢

j=
95

e,
0

(39)
8 Renyi Entropy

The measure of variation of uncertainty is said to be an entropy of a random variable. A popular entropy
measure is [23].

Proposition 7: If X is a continuous random variable having probability density function f (), then Renyi
entropy is defined as

JR(7)=Wloguf (x:6,a,p)d J[40]

1 i 6 (6axt+0)
=—1 d 40
1- -!(a6?5+120[ 6x° ] J g o

:ilogi{y} a’ """ {J-X (87-67+6r-1)-1g /dy}

1-y 3L a95+120)

F ) l'a
Recall that, IX “la Adx :? hence we have

1 IogZy:_y_ a9 {F87—67/+6r—1}
1y "ELr)(ag® +120) 6 (67

(41)

_ 1 l0g Ly oot {F8;/—6;/+6r—1}
1-y "i5lr)(a6® +120) 6 y oo

9 Maximum Likelihood Estimation Method

Proposition 8: Let ( X}, X, X3,..., X,) be a random sample of size n from Eq.3. The likelihood function, L of
IHD is given by

L(O,a) = ﬁ f(x,0,a) [37] (42)
i=1

n 6?6(6axi6+6’)e_%‘
=1 ; 5 (43)
i (a0®+120)6x
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Taking natural log of (43), we obtain InL (&, &) as

n 0°(6arx’ +9)e’%

=il (a6® +120)6x,

) gt " (6axi6+9) —HZ;G]

= [a05+120J *Zl: 6X’ e

=nin(6°)—nin(ad® +120)+ 3'1n (6ax} +6)- 31 (GX?)—QZn: X (44)
i=1 i=1 i=1

The partial derivatives in terms of the parameter (a, 6?) , are given as follows

dLL 6n  5nad* 1 1
== 4y~ M x'=0 45
d0 0 ab®+120 ;(6axf+0) Zl“ o

d,L  -ne® I 6x’

= — 1 =0 46
da a6?5+120+; (6’ +0) “o
10 Asymptotic Confidence Interval of the inverse Hamza Distribution

In this section, we present the asymptotic confidence intervals for the parameters of the IHD distribution. Let

A A AT T

V= (19,05) be the maximum likelihood estimate of ¥ = (49,0!) . Under the condition that the parameters
are in the interior of the parameter space, but not on the boundary, the asymptotic distribution of\/ﬁ(‘i’ —‘P)
is N, (O,I_l(‘I’)), where I(‘P) is the expected fisher information matrix. The asymptotic behavior of the

expected information matrix can be approximate by the observed information matrix, denoted by I, (‘i’) . The

observed information matrix of the inverse power Hamza is given by

°L(6,a) O°L(6,a)

2
In (‘P) _ 89 6498a (47)
’L(0,a) O°L(O,)
0000 oo’

Thus,
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A 4 Var(éj COV(I;,CAZJ
L(P)=(m(¥) =] ) (48)
COV(O[,H) var(a)

Taking the second order derivatives of (45) and (46) each with respect to € and ¢ respectively, we obtain the
entries of (48) as follows

O°LL ng"° o 36x°
= ) s R (49)
0a’  (a6® +120) 2 (65 +0)

L (2400na6’-Bna’é®) en o, 1
06> (a6° +120) 0" 13 (6ax’ +6)

(50)

2 4 n 6
OCLL 6000 <l X -

0000 (a05 +120)2 =] (6axf+9)2

2 - (52)
0ba (a0 +120) | (6 +0)

2 4 n 6
o°LL _ 600n@ —62 X:

The four equations above are Eq. (49), (50), (51), (52) respectively.

The expectations in the Fisher information matrix can be obtained numerically. The multivariate normal
T
distribution with mean vector (0,0,0) and covariance matrix I’l(‘P) can be used to construct confidence

intervals for the model parameters. The approximate 100(1—77)% two sided confidence intervals for
6,a,and S are determined by

o+ Z,, var(é),a?izﬂ/p [var (&), 5+ Z, 4 /var(/?) (53)

respectively, where Zn/2 is the upper(n/2)th percentile of a standard normal distribution.

11 Application on Real Data

This section involves the application of the proposed distribution on two real life datasets and the comparison of
the proposed distribution with three other probability distributions, they are the inverse Lomax distribution
(ILD), inverse Ishita distribution (1ID), and the inverse Rama distribution (IRD). Goodness of fit has been
decided using the Akaike information criteria, Bayesian information criteria values respectively, which are
calculated for each distribution and also compared. As we know that the basis for calculating best goodness of
fit during comparisons of distribution is minimum value of AIC and BIC. Comparison of distribution is shown
in Table 1 as well as their fitted plots are presented below. Tables 1 and 2 shows that AIC and BIC of IHD, ILD,
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11D, and IRD (Four distributions) have been calculated and compared, and it is observed that inverse Hamza
distribution (IHD) has minimum value of AIC and BIC in comparison to ILD, IID, and IRD.

Data set 1: This data set represents uncensored breaking stress of carbon fibres in (Gba).

0.92, 0.928, 0.997, 0.9971, 1.061, 1.117, 1.162, 1.183, 1.187, 1.192, 1.196, 1.213, 1.215, 1.2199, 1.22, 1.224,
1.225, 1.228, 1.237, 1.24, 1.244, 1.259, 1.261, 1.263, 1.276, 1.31, 1.321, 1.329, 1.331, 1.337, 1.351, 1.359,
1.388, 1.408, 1.449, 1.4497, 1.45, 1.459, 1.471, 1.475, 1.477, 1.48, 1.489, 1.501, 1.507, 1.515, 1.53, 1.5304,
1.533, 1.544, 1.5443, 1.552, 1.556, 1.562, 1.566, 1.585, 1.586, 1.599, 1.602, 1.614, 1.616, 1.617, 1.628, 1.684,
1.711, 1.718, 1.733, 1.738, 1.743, 1.759, 1.777, 1.794, 1.799, 1.806, 1.814, 1.816, 1.828, 1.83, 1.884, 1.892,
1.944, 1,972, 1.984, 1.987, 2.02, 2.0304, 2.029, 2.035, 2.037, 2.043, 2.046, 2.059, 2.111, 2.165, 2.686, 2.778,
2.972, 3.504, 3.863, 5.306

Source: see [16]

Data set 2: Relief time of twenty patients receiving an analgesic
11,14,13,1.7,19,18,16,2.2,1.7,2.7,41,1.8,15,1.2,1.4,3.0,1.7,2.3,1.6, 2.0
Source: see [2]

Table 1. MLEs, S.E, LL, AIC, and BIC (Data 1)

Distributio Parameter Standard Log L AlC BIC AlCc

n Estimation Error

IHD o =2.488390e+05 1.186328e+04 149.60 303.2086 308.419 303.4586
0 =1.529781 1.528462e-01

IRD 0 =2.6489423 0.1438201 168.6203 339.2405 341.8457 339.4905

1D 0 =2.08978 0.130738 155.5259 313.0518 315.657 313.3018

ILD b=1.486350e+02 1.077735e+02 149.9139 303.8279 309.0382 304.0779

| =1.032588e-02  7.442275e-03

Table 2. MLEs, S.E, LL, AIC, and BIC (Data 2)

Distribution ~ Parameter Standard Log L AIC BIC AlCc
Estimation Error
IHD o =3.366091e+0: 2.372657e+04  32.66913  69,33827 71.32973 70.83827

0=1.724941 3.855735e-01

IRD 6 =2.818379 0.355971 36.1725 74.345  75.34073 75.845
1D 6 =2.25893 0.33081 33.7432  69.4864 71.48213 70.98639
ILD b =160.13398861 272.07671 32.72626 69.45251 71.44398 70.95251

I =0.01080690  0.018263
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Based on the results displayed in Tables 1 and 2 respectively, it is evident that the inverse Hamza distribution
has the smallest AIC, BIC, AICc, and log-likelihood values among all competing models, and so it could be
chosen as the best model among all distributions which have been fitted to the two data sets.

12 Conclusion

A two-parameter lifetime distribution called the inverse Hamza distribution is introduced as an inverse
transformation extension of the Hamza distribution. Its several properties including moments, survival and
hazard function, quantile function, stochastic ordering, ordered statistics, Renyi entropy, have been discussed.
The parameters of the distribution have been estimated by known method of maximum likelihood estimator.
Finally, the performance of the model has been examined, being applied to two data sets and compared with
Inverse Ishita distribution, Inverse Lomax distribution, and Inverse Rama distribution. Result shows that the
Inverse Hamza distribution gives an adequate fit for the data sets.
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